AUTOMATIC INVIVO NMR DATA-PROCESSING BASED ON AN ENHANCEMENT PROCEDURE AND LINEAR PREDICTION METHOD

被引:22
作者
DIOP, A
BRIGUET, A
GRAVERONDEMILLY, D
机构
[1] Laboratoire de RMN Université Claude Bernard, Villeurbanne
关键词
D O I
10.1002/mrm.1910270211
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A new data processing method for in vivo NMR data quantitation is presented. This method (EPLPSVD) is based on the enhancement procedure (EP) proposed by J. A. Cadzow (IEEE Trans. Acoust. Speech Signal Process. 36, 49, 1988) followed by the usual linear prediction method using the singular value decomposition (LPSVD). The evaluation of this protocol is performed using synthesized 31P signals with different signal‐to‐noise ratios. A Monte‐Carlo simulation as a function of signal‐to‐noise ratio (SNR) has proved that EPLPSVD leads to unbiased estimated values of parameters. Then the Cramer‐Rao method yields reliable confidence intervals for the estimated parameters. The estimates of NMR parameters using EPLPSVD are reliable and accurate for SNR ≥ 1.2 while the LPSVD method failed for SNR ≤ 4. This protocol is applied to analyze automatically a series of 31P free induction decays obtained from the human gastrocnemius muscle during exercise. Spectral parameters with their confidence intervals, curves of relative intensity variations in phosphocreatine and inorganic phosphate, and pH curves are automatically provided. Copyright © 1992 Wiley‐Liss, Inc., A Wiley Company
引用
收藏
页码:318 / 328
页数:11
相关论文
共 52 条
[1]  
[Anonymous], MAXIMUM ENTROPY BAYE
[2]   ERROR THEORY FOR TIME-DOMAIN SIGNAL ANALYSIS WITH LINEAR PREDICTION AND SINGULAR VALUE DECOMPOSITION [J].
BARKHUIJSEN, H ;
DEBEER, R ;
VANORMONDT, D .
JOURNAL OF MAGNETIC RESONANCE, 1986, 67 (02) :371-375
[3]   RETRIEVAL OF FREQUENCIES, AMPLITUDES, DAMPING FACTORS, AND PHASES FROM TIME-DOMAIN SIGNALS USING A LINEAR LEAST-SQUARES PROCEDURE [J].
BARKHUIJSEN, H ;
DEBEER, R ;
BOVEE, WMMJ ;
VANORMONDT, D .
JOURNAL OF MAGNETIC RESONANCE, 1985, 61 (03) :465-481
[4]   PRONY-BURG METHOD FOR NMR SPECTRAL-ANALYSIS [J].
BARONE, P ;
GUIDONI, L ;
MASSARO, E ;
VITI, V .
JOURNAL OF MAGNETIC RESONANCE, 1987, 73 (01) :23-33
[5]   BAYESIAN-ANALYSIS .1. PARAMETER-ESTIMATION USING QUADRATURE NMR MODELS [J].
BRETTHORST, GL .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (03) :533-551
[6]   BAYESIAN-ANALYSIS .3. APPLICATIONS TO NMR SIGNAL-DETECTION, MODEL SELECTION, AND PARAMETER-ESTIMATION [J].
BRETTHORST, GL .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (03) :571-595
[7]   BAYESIAN-ANALYSIS .2. SIGNAL-DETECTION AND MODEL SELECTION [J].
BRETTHORST, GL .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (03) :552-570
[8]   P-31 NMR BAYESIAN SPECTRAL-ANALYSIS OF RAT-BRAIN INVIVO [J].
BRETTHORST, GL ;
KOTYK, JJ ;
ACKERMAN, JJH .
MAGNETIC RESONANCE IN MEDICINE, 1989, 9 (02) :282-287
[9]   BAYESIAN-ANALYSIS .4. NOISE AND COMPUTING TIME CONSIDERATIONS [J].
BRETTHORST, GL .
JOURNAL OF MAGNETIC RESONANCE, 1991, 93 (02) :369-394
[10]   BAYESIAN-ANALYSIS OF TIME-DOMAIN MAGNETIC-RESONANCE SIGNALS [J].
BRETTHORST, GL ;
HUNG, CC ;
DAVIGNON, DA ;
ACKERMAN, JJH .
JOURNAL OF MAGNETIC RESONANCE, 1988, 79 (02) :369-376