Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks

被引:161
作者
Gao, Mingchen [1 ]
Bagci, Ulas [2 ]
Lu, Le [1 ]
Wu, Aaron [1 ]
Buty, Mario [1 ]
Shin, Hoo-Chang [1 ]
Roth, Holger [1 ]
Papadakis, Georgios Z. [1 ]
Depeursinge, Adrien [3 ]
Summers, Ronald M. [1 ]
Xu, Ziyue [1 ]
Mollura, Daniel J. [1 ]
机构
[1] NIH, Radiol & Imaging Sci, Ctr Clin, Bldg 10, Bethesda, MD 20892 USA
[2] Univ Cent Florida, Ctr Res Comp Vis, Orlando, FL 32816 USA
[3] Univ Appl Sci Western Switzerland HES SO, Inst Informat Syst, Sierre, Switzerland
关键词
Interstitial lung disease; convolutional neural network; holistic medical image classification;
D O I
10.1080/21681163.2015.1124249
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Interstitial lung diseases (ILD) involve several abnormal imaging patterns observed in computed tomography (CT) images. Accurate classification of these patterns plays a significant role in precise clinical decision making of the extent and nature of the diseases. Therefore, it is important for developing automated pulmonary computer-aided detection systems. Conventionally, this task relies on experts' manual identification of regions of interest (ROIs) as a prerequisite to diagnose potential diseases. This protocol is time consuming and inhibits fully automatic assessment. In this paper, we present a new method to classify ILD imaging patterns on CT images. The main difference is that the proposed algorithm uses the entire image as a holistic input. By circumventing the prerequisite of manual input ROIs, our problem set-up is significantly more difficult than previous work but can better address the clinical workflow. Qualitative and quantitative results using a publicly available ILD database demonstrate state-of-the-art classification accuracy under the patch-based classification and shows the potential of predicting the ILD type using holistic image.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 2014 IEEE C COMPUTER, P580, DOI [10.1109/CVPR.2014.81, DOI 10.1109/CVPR.2014.81]
[2]   Automatic Detection and Quantification of Tree-in-Bud (TIB) Opacities From CT Scans [J].
Bagci, Ulas ;
Yao, Jianhua ;
Wu, Albert ;
Caban, Jesus ;
Palmore, Tara N. ;
Suffredini, Anthony F. ;
Aras, Omer ;
Mollura, Daniel J. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (06) :1620-1632
[3]   Computer-assisted detection of infectious lung diseases: A review [J].
Bagci, Ulas ;
Bray, Mike ;
Caban, Jesus ;
Yao, Jianhua ;
Mollura, Daniel J. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2012, 36 (01) :72-84
[4]   Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks [J].
Ciresan, Dan C. ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Schmidhuber, Juergen .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2013, PT II, 2013, 8150 :411-418
[5]   Near-Affine-Invariant Texture Learning for Lung Tissue Analysis Using Isotropic Wavelet Frames [J].
Depeursinge, Adrien ;
Van de Ville, Dimitri ;
Platon, Alexandra ;
Geissbuhler, Antoine ;
Poletti, Pierre-Alexandre ;
Mueller, Henning .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2012, 16 (04) :665-675
[6]   Building a reference multimedia database for interstitial lung diseases [J].
Depeursinge, Adrien ;
Vargas, Alejandro ;
Platon, Alexandra ;
Geissbuhler, Antoine ;
Poletti, Pierre-Alexandre ;
Mueller, Henning .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2012, 36 (03) :227-238
[7]  
Krizhevsky A., 2017, ADV NEURAL INFORM PR, V60, DOI [10.1145/3065386, DOI 10.1145/3065386]
[8]  
Li Q, 2014, 2014 13 INT C CONTR
[9]  
Prasoon A, 2013, LECT NOTES COMPUT SC, V8150, P246, DOI 10.1007/978-3-642-40763-5_31
[10]   CNN Features off-the-shelf: an Astounding Baseline for Recognition [J].
Razavian, Ali Sharif ;
Azizpour, Hossein ;
Sullivan, Josephine ;
Carlsson, Stefan .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, :512-519