Finite element approximation of elliptic partial differential equations on implicit surfaces

被引:34
作者
Burger, Martin [1 ]
机构
[1] Westfal Wilhelms Univ Munster, Inst Numer & Angew Math, Einsteinstr 62, D-48163 Munster, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00791-007-0081-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to investigate finite element methods for the solution of elliptic partial differential equations on implicitly defined surfaces. The problem of solving such equations without triangulating surfaces is of increasing importance in various applications, and their discretization has recently been investigated in the framework of finite difference methods. For the two most frequently used implicit representations of surfaces, namely level set methods and phase-field methods, we discuss the construction of finite element schemes, the solution of the arising discretized problems, and provide error estimates. The convergence properties of the finite element methods are illustrated by computations for several test problems.
引用
收藏
页码:87 / 100
页数:14
相关论文
共 23 条
[11]   ON THE MOTION OF A PHASE INTERFACE BY SURFACE-DIFFUSION [J].
DAVI, F ;
GURTIN, ME .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1990, 41 (06) :782-811
[12]  
Delfour M, 2001, ADV DESIGN CONTROL
[13]   Anisotropic diffusion in vector field visualization on Euclidean domains and surfaces [J].
Diewald, U ;
Preusser, T ;
Rumpf, M .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2000, 6 (02) :139-149
[14]   Digital materials and virtual weathering [J].
Dorsey, J ;
Hanrahan, P .
SCIENTIFIC AMERICAN, 2000, 282 (02) :64-71
[15]  
Faugeras O., 1999, CONTINUOUS CASE RES
[16]  
Fife P.C., 2001, OXFORD, V3, P291, DOI [10.4171/IFB/42, DOI 10.4171/IFB/42]
[17]  
Greer J.B., 2005, 0541 CAM
[18]   An inexact Newton-CG-type active contour approach for the minimization of the Numford-Shah functional [J].
Hintermüller, M ;
Ring, W .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2004, 20 (1-2) :19-42
[19]  
Lions J. L., 1972, NONHOMOGENOUS BOUNDA, DOI DOI 10.1007/978-3-642-65217-2
[20]   FRONTS PROPAGATING WITH CURVATURE-DEPENDENT SPEED - ALGORITHMS BASED ON HAMILTON-JACOBI FORMULATIONS [J].
OSHER, S ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (01) :12-49