A CLUSTER-EXPANSION APPROACH TO A ONE-DIMENSIONAL BOLTZMANN-EQUATION - A VALIDITY RESULT

被引:15
作者
CAPRINO, S [1 ]
PULVIRENTI, M [1 ]
机构
[1] UNIV ROMA LA SAPIENZA,DIPARTIMENTO MATEMAT,I-00185 ROME,ITALY
关键词
D O I
10.1007/BF02099889
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a stochastic particle system on the Line and prove that, when the number of particles diverges and the probability of a collision is suitably rescaled, the system is well described by a one-dimensional Boltzmann equation. The result holds globally in time, without any smallness assumption.
引用
收藏
页码:603 / 631
页数:29
相关论文
共 6 条
[1]   A DERIVATION OF THE BROADWELL EQUATION [J].
CAPRINO, S ;
DEMASI, A ;
PRESUTTI, E ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (03) :443-465
[2]  
CERCIGNANI C, P NONLINEAR HYPERBOL, P47
[3]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[4]   STATIONARY NONEQUILIBRIUM SOLUTIONS OF MODEL BOLTZMANN-EQUATION [J].
IANIRO, N ;
LEBOWITZ, JL .
FOUNDATIONS OF PHYSICS, 1985, 15 (05) :531-544
[5]   GLOBAL VALIDITY OF THE BOLTZMANN-EQUATION FOR TWO-DIMENSIONAL AND 3-DIMENSIONAL RARE-GAS IN VACUUM - ERRATUM AND IMPROVED RESULT [J].
ILLNER, R ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (01) :143-146
[6]  
LANFORD III O. E., 1975, LECT NOTE PHYS, V38, P1