REASONING OUT THE EMPIRICAL RULE D-LESS-THAN-2

被引:10
作者
HATTORI, K
HATTORI, T
WATANABE, H
机构
[1] GAKUSHUIN UNIV,FAC SCI,DEPT PHYS,TOSHIMA KU,TOKYO 171,JAPAN
[2] TOKYO METROPOLITAN UNIV,FAC SCI,DEPT MATH,SETAGAYA KU,TOKYO 158,JAPAN
关键词
D O I
10.1016/0375-9601(86)90466-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:207 / 212
页数:6
相关论文
共 18 条
[1]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[2]   EXACT FRACTALS WITH ADJUSTABLE FRACTAL AND FRACTION DIMENSIONALITIES [J].
BENAVRAHAM, D ;
HAVLIN, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (15) :L559-L563
[3]   AC RESPONSE OF FRACTAL NETWORKS [J].
CLERC, JP ;
TREMBLAY, AMS ;
ALBINET, G ;
MITESCU, CD .
JOURNAL DE PHYSIQUE LETTRES, 1984, 45 (19) :L913-L924
[4]   LATTICES OF EFFECTIVELY NONINTEGRAL DIMENSIONALITY [J].
DHAR, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (04) :577-585
[5]   GEOMETRIC IMPLEMENTATION OF HYPERCUBIC LATTICES WITH NONINTEGER DIMENSIONALITY BY USE OF LOW LACUNARITY FRACTAL LATTICES [J].
GEFEN, Y ;
MEIR, Y ;
MANDELBROT, BB ;
AHARONY, A .
PHYSICAL REVIEW LETTERS, 1983, 50 (03) :145-148
[6]   SOLVABLE FRACTAL FAMILY, AND ITS POSSIBLE RELATION TO THE BACKBONE AT PERCOLATION [J].
GEFEN, Y ;
AHARONY, A ;
MANDELBROT, BB ;
KIRKPATRICK, S .
PHYSICAL REVIEW LETTERS, 1981, 47 (25) :1771-1774
[7]   NEW APPROXIMATE RENORMALIZATION METHOD ON FRACTALS [J].
HATTORI, K ;
HATTORI, T ;
WATANABE, H .
PHYSICAL REVIEW A, 1985, 32 (06) :3730-3733
[8]  
Hattori K., UNPUB
[9]   RENORMALIZATION ON SYMMETRIC FRACTALS [J].
HILFER, R ;
BLUMEN, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (14) :L783-L789
[10]   RENORMALIZATION ON SIERPINSKI-TYPE FRACTALS [J].
HILFER, R ;
BLUMEN, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (10) :L537-L545