ON THERMAL QUENCHING OF THE PHOTOCONDUCTIVITY IN HYDROGENATED AMORPHOUS-SILICON

被引:48
作者
TRAN, MQ
机构
[1] UNIV CHICAGO,DEPT PHYS,CHICAGO,IL 60637
[2] UNIV CHICAGO,JAMES FRANCK INST,CHICAGO,IL 60637
来源
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES | 1995年 / 72卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1080/13642819508239062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal quenching (TQ) of the photoconductivity sigma(p) is the decrease in sigma(p) with increasing temperature. We present an explanation for TQ of sigma(p) usually observed above 100 K in undoped and weakly doped hydrogenated amorphous silicon (a-Si:H). With computer simulations employing the theory of Simmons and Taylor, we show that TQ is caused by the natural density of gap states of a-Si:H. The onset of thermal quenching occurs at the temperature T-TQ where the trapped hole density in the valence band tail has decreased to twice the density N-D of dangling bonds. We elucidate the experimental observation that T-TQ shifts to lower temperatures as the Fermi level shifts toward the valence band or as N-D is increased and explain the reported superlinear dependence of the inverse photoconductivity sigma(p)(-1) on N-D. We test and discuss the validity of the Simmons-Taylor theory by comparing the simulated and experimental temperature dependences of the Rose exponent gamma, which relates the photoconductivity and the generation rate.
引用
收藏
页码:35 / 66
页数:32
相关论文
共 54 条
[1]  
Adler D., Joffa E.J., Phys. Rev. Lett, 36, (1976)
[2]  
Almeriouh Y., Bullot J., Cordier P., Gauthier M., Mawawa G., Phil. Mag. B, 63, (1991)
[3]  
Arene E., Baixeras J., Phys. Rev. B, 30, (1984)
[4]  
Bullot J., Cordier P., Gauthier M., Phil. Mag., B, 67, (1993)
[5]  
Cohen J.D., Leen T.M., Zhong F., J. Non-Crystalline Solids, 164-166, (1993)
[6]  
Dersch H., Schweitzer L., Phil. Mag. B, 50, (1984)
[7]  
Dersch H., Schweitzer L., Stuke J., Phys. Rev. B, 28, (1983)
[8]  
Dersch H., Stuke J., Beichler J., Phys. Stat. Sol. (B), 105, (1981)
[9]  
Doghmane A., Spear W.E., Phil. Mag. B, 53, (1986)
[10]  
Fritzsche H., Tran M.Q., Yoon B.-G., Chi D.-Z., J. Non-Crystalline Solids, 137-138, (1991)