ON THERMAL QUENCHING OF THE PHOTOCONDUCTIVITY IN HYDROGENATED AMORPHOUS-SILICON

被引:48
作者
TRAN, MQ
机构
[1] UNIV CHICAGO,DEPT PHYS,CHICAGO,IL 60637
[2] UNIV CHICAGO,JAMES FRANCK INST,CHICAGO,IL 60637
来源
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES | 1995年 / 72卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1080/13642819508239062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal quenching (TQ) of the photoconductivity sigma(p) is the decrease in sigma(p) with increasing temperature. We present an explanation for TQ of sigma(p) usually observed above 100 K in undoped and weakly doped hydrogenated amorphous silicon (a-Si:H). With computer simulations employing the theory of Simmons and Taylor, we show that TQ is caused by the natural density of gap states of a-Si:H. The onset of thermal quenching occurs at the temperature T-TQ where the trapped hole density in the valence band tail has decreased to twice the density N-D of dangling bonds. We elucidate the experimental observation that T-TQ shifts to lower temperatures as the Fermi level shifts toward the valence band or as N-D is increased and explain the reported superlinear dependence of the inverse photoconductivity sigma(p)(-1) on N-D. We test and discuss the validity of the Simmons-Taylor theory by comparing the simulated and experimental temperature dependences of the Rose exponent gamma, which relates the photoconductivity and the generation rate.
引用
收藏
页码:35 / 66
页数:32
相关论文
共 54 条
[11]  
Fritzsche H., Yoon B.-G., Chi D.-Z., Tran M.Q., J. Non-Crystallline Solids, 141, (1992)
[12]  
Fuhs W., Welsch H.M., Booth D.C., Phys. Stat. Sol. (B), 120, (1983)
[13]  
Gu B., Han D., Li C., Zhao S., Phil. Mag. B, 53, (1986)
[14]  
Han D., Fritzsche H., J. Non-Crystalline Solids, 59-60, (1983)
[15]  
Hoheisel M., Carius R., Fuhs W., J. Non-Crystalline Solids, 63, (1984)
[16]  
Hubin J., Shah A.V., Sauvain E., Phil. Mag. Lett, 66, (1992)
[17]  
Jackson W.B., Solid St. Commun, 44, (1982)
[18]  
Johanson R.E., Phys. Rev. B, 45, (1992)
[19]  
Kocka J., Stika O., Vanecek M., Triska A., Schauer F., Zmeskal O., J. Non-Crystalline Solids, 77-78, (1985)
[20]  
Lang D.V., Cohen J.D., Harbison J.P., Phys. Rev. B, 25, (1982)