GAUSSIAN RANDOM-MATRIX PROCESS AND UNIVERSAL PARAMETRIC CORRELATIONS IN COMPLEX-SYSTEMS

被引:21
作者
ATTIAS, H
ALHASSID, Y
机构
[1] Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 05期
关键词
D O I
10.1103/PhysRevE.52.4776
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce the framework of the Gaussian random-matrix process as an extension of Dyson's Gaussian ensembles and use it to discuss the statistical properties of complex quantum systems that depend on an external parameter. We classify the Gaussian processes according to the short-distance diffusive behavior of their energy levels and demonstrate that all parametric correlation functions become universal upon the appropriate scaling of the parameter. The class of differentiable Gaussian processes is identified as the relevant one for most physical systems. We reproduce the known spectral correlators and compute eigenfunction correlators in their universal form Numerical evidence from both a chaotic model and weakly disordered model confirms our predictions.
引用
收藏
页码:4776 / 4792
页数:17
相关论文
共 53 条
[11]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[12]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[13]   RANDOM-MATRIX PHYSICS - SPECTRUM AND STRENGTH FLUCTUATIONS [J].
BRODY, TA ;
FLORES, J ;
FRENCH, JB ;
MELLO, PA ;
PANDEY, A ;
WONG, SSM .
REVIEWS OF MODERN PHYSICS, 1981, 53 (03) :385-479
[14]   SOLUTION OF A 3-BODY PROBLEM IN ONE DIMENSION [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2191-&
[15]   GROUND STATE OF A ONE-DIMENSIONAL N-BODY SYSTEM [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2197-&
[16]  
DELANDE D, 1992, FUNDAMENTAL SYSTEMS
[18]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+
[19]   STATISTICAL THEORY OF ENERGY LEVELS OF COMPLEX SYSTEMS .3. [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (01) :166-&
[20]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773