QUANTUM-MECHANICS WITH Q-DEFORMED COMMUTATORS AND PERIODIC VARIABLES

被引:10
作者
KOBAYASHI, T
SUZUKI, T
机构
[1] Inst. of Phys., Tsukuba Univ., Ibaraki
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1993年 / 26卷 / 21期
关键词
D O I
10.1088/0305-4470/26/21/043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A q-deformed commutator for arbitrary q is derived from a variable with a periodic boundary condition such as an azimuthal angle psi (0 less-than-or-equal-to psi < 2pi). A Hamiltonian can be written down in an Hermitian form for q = e(alpha) or q = e(ialpha) with alpha is-an-element-of R, and its eigenfunctions and eigenvalues are obtained. Algebraic structures, W1+infinity and U(q)(sl2), of this model and introductions of gauge interactions are discussed. Extensions to man variables and some elementary examples are presented.
引用
收藏
页码:6055 / 6065
页数:11
相关论文
共 12 条
  • [1] QUANTUM GROUP PARTICLES AND NON-ARCHIMEDEAN GEOMETRY
    AREFEVA, IY
    VOLOVICH, IV
    [J]. PHYSICS LETTERS B, 1991, 268 (02) : 179 - 187
  • [2] THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS
    BIEDENHARN, LC
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18): : L873 - L878
  • [3] SOQ(N) COVARIANT DIFFERENTIAL-CALCULUS ON QUANTUM SPACE AND QUANTUM DEFORMATION OF SCHRODINGER-EQUATION
    CAROWWATAMURA, U
    SCHLIEKER, M
    WATAMURA, S
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1991, 49 (03): : 439 - 446
  • [4] KOBAYASHI T, 1993, PHYS LETT B
  • [5] LI YQ, 1992, J PHYS A, V65, P6779
  • [6] ON Q-ANALOGUES OF THE QUANTUM HARMONIC-OSCILLATOR AND THE QUANTUM GROUP SU(2)Q
    MACFARLANE, AJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (21): : 4581 - 4588
  • [7] ON QUANTIZATION OF SIMPLE HARMONIC-OSCILLATORS
    ODAKA, K
    KISHI, T
    KAMEFUCHI, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (11): : L591 - L596
  • [8] A NEW HIGHER-SPIN ALGEBRA AND THE LONE-STAR PRODUCT
    POPE, CN
    ROMANS, LJ
    SHEN, X
    [J]. PHYSICS LETTERS B, 1990, 242 (3-4) : 401 - 406
  • [9] A Q-DEFORMED QUANTUM-MECHANICAL TOY MODEL
    SCHWENK, J
    WESS, J
    [J]. PHYSICS LETTERS B, 1992, 291 (03) : 273 - 277
  • [10] SUZUKI T, 1993, IN PRESS J MATH PHYS