FROM THE PERRON-FROBENIUS EQUATION TO THE FOKKER-PLANCK EQUATION

被引:28
作者
BECK, C [1 ]
机构
[1] UNIV LONDON,QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLAND
关键词
PERRON-FROBENIUS EQUATION; FOKKER-PLANCK EQUATION; SCALING LIMITS; MAPS OF KAPLAN-YORKE TYPE; CORRECTIONS TO GAUSSIAN BEHAVIOR; OMEGA-EXPANSION;
D O I
10.1007/BF02181207
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that for certain classes of deterministic dynamical systems the Perron-Frobenius equation reduces to the Fokker-Planck equation in an appropriate scaling limit. By perturbative expansion in a small time scale parameter, we also derive the equations that are obeyed by the first- and second-order correction terms to the Fokker-Planck limit case. In general, these equations describe non-Gaussian corrections to a Langevin dynamics due to an underlying deterministic chaotic dynamics. For double-symmetric maps, the first-order correction term turns out to satisfy a kind of inhomogeneous Fokker-Planck equation with a source term. For a special example, we are able solve the first-and second-order equations explicitly.
引用
收藏
页码:875 / 894
页数:20
相关论文
共 20 条
[1]  
Billingsley P., Convergence of Probability Measures, (1968)
[2]  
Ruelle D., Sinai, Physica, 140 A, (1986)
[3]  
Spohn H., Rev. Mod. Phys., 52, (1980)
[4]  
Bunimovich L.A., Sinai, Commun. Math. Phys., 73, (1980)
[5]  
Durr D., Goldstein S., Lebowitz J.L., Commun. Math. Phys., 78, (1981)
[6]  
Durr D., Goldstein S., Lebowitz J.L., J. Stat. Phys., 30, (1983)
[7]  
Elskens Y., Physica, 142 A, (1987)
[8]  
Chernov N.I., Eyink G.L., Lebowitz J.L., Sinai, Phys. Rev. Lett., 70, (1993)
[9]  
Beck C., Roepstorff G., Physica, 145 A, (1987)
[10]  
Beck C., Physica, 169 A, (1990)