FROM THE PERRON-FROBENIUS EQUATION TO THE FOKKER-PLANCK EQUATION

被引:28
作者
BECK, C [1 ]
机构
[1] UNIV LONDON,QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLAND
关键词
PERRON-FROBENIUS EQUATION; FOKKER-PLANCK EQUATION; SCALING LIMITS; MAPS OF KAPLAN-YORKE TYPE; CORRECTIONS TO GAUSSIAN BEHAVIOR; OMEGA-EXPANSION;
D O I
10.1007/BF02181207
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that for certain classes of deterministic dynamical systems the Perron-Frobenius equation reduces to the Fokker-Planck equation in an appropriate scaling limit. By perturbative expansion in a small time scale parameter, we also derive the equations that are obeyed by the first- and second-order correction terms to the Fokker-Planck limit case. In general, these equations describe non-Gaussian corrections to a Langevin dynamics due to an underlying deterministic chaotic dynamics. For double-symmetric maps, the first-order correction term turns out to satisfy a kind of inhomogeneous Fokker-Planck equation with a source term. For a special example, we are able solve the first-and second-order equations explicitly.
引用
收藏
页码:875 / 894
页数:20
相关论文
共 20 条
[11]  
Beck C., Commun. Math. Phys., 130, (1990)
[12]  
Beck C., Nonlinearity, 4, (1991)
[13]  
Beck C., Roepstorff G., Schroer C., Physica, 72 D, (1994)
[14]  
Shimizu T., Physica, 164 A, (1990)
[15]  
Shimizu T., Physica, 195 A, (1993)
[16]  
Beck C., Phys. Rev., 49 E, (1994)
[17]  
Kaplan J.L., Yorke J.A., Functional Differential Equations and the Approximation of Fixed Points, (1979)
[18]  
Badii R., Broggi G., Derighetti B., Ravani M., Ciliberto S., Politi A., Rubio M.A., Phys. Rev. Lett., 60, (1988)
[19]  
Beck C., Schlogl F., Thermodynamics of Chaotic Systems, (1993)
[20]  
van Kampen N.G., Stochastic Processes in Physics and Chemistry, (1981)