A high-fidelity physical map of human chromosome 21q in yeast artificial chromosomes

被引:33
作者
Korenberg, JR
Chen, XN
Mitchell, S
Fannin, S
Gerwehr, S
Cohen, D
Chumakov, I
机构
[1] UNIV CALIF LOS ANGELES,LOS ANGELES,CA 90048
[2] CTR ETUD POLYMORPHISME HUMAIN,F-75010 PARIS,FRANCE
来源
GENOME RESEARCH | 1995年 / 5卷 / 05期
关键词
D O I
10.1101/gr.5.5.427
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding of the human genome has been advanced significantly by the development of large DNA fragment libraries. To create a map of chromosome 21q that integrates the physical, cytogenetic, and linkage maps, we have characterized a subset of 127 chromosome 21 yeast artificial chromosome (YAC) clones for size, by pulsed field gel electrophoresis, for chimerism and cytogenetic location, by fluorescence in situ hybridization (FISH), and for sequence-tagged sites (STS) content, by PCR. It was found that 54% generated unique map locations on chromosome 21, and 45% detected sites on other chromosomes, of which 33% likely represented true chimerism. Using a simple algorithm, the data from nonchimeric clones have been combined to generate a size-corrected minimal tiling pathway including 58 chromosome 21q YACs that represent similar to 33 Mb and include 9 gaps. To confirm the resulting order and relationship to the cytogenetic map, the breakpoints from 23 cell lines partially aneuploid for chromosome 21 have been analyzed by quantitative Southern blot dosage analysis and FISH with a subset of the markers. As one way of investigating the relationship of the genetic to the physical map, the genetic map was superimposed on the physical map using a subset of well-defined markers common to both. The results suggest potential hot spots for recombination and/or gaps in the physical map. This integrated map will facilitate the search for the genes responsible for the Down syndrome phenotypes and provide a better understanding of genome organization and chromosome structure.
引用
收藏
页码:427 / 443
页数:17
相关论文
共 22 条
[11]   HUMAN CDNA MAPPING USING A HIGH-RESOLUTION R-BANDING TECHNIQUE AND FLUORESCENCE IN-SITU HYBRIDIZATION [J].
KORENBERG, JR ;
CHEN, XN .
CYTOGENETICS AND CELL GENETICS, 1995, 69 (3-4) :196-200
[12]   DELETION OF CHROMOSOME-21 AND NORMAL INTELLIGENCE - MOLECULAR DEFINITION OF THE LESION [J].
KORENBERG, JR ;
KALOUSEK, DK ;
ANNEREN, G ;
PULST, SM ;
HALL, JG ;
EPSTEIN, CJ ;
COX, DR .
HUMAN GENETICS, 1991, 87 (02) :112-118
[13]   BASE RATIO, DNA CONTENT, AND QUINACRINE-BRIGHTNESS OF HUMAN-CHROMOSOMES [J].
KORENBERG, JR ;
ENGELS, WR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1978, 75 (07) :3382-3386
[14]   INTEGRATION OF GENE MAPS - CHROMOSOME-21 [J].
LAWRENCE, S ;
COLLINS, A ;
KEATS, BJ ;
HULTEN, M ;
MORTON, NE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (15) :7210-7214
[15]   FLUORESCENCE INSITU HYBRIDIZATION OF YAC CLONES AFTER ALU-PCR AMPLIFICATION [J].
LENGAUER, C ;
GREEN, ED ;
CREMER, T .
GENOMICS, 1992, 13 (03) :826-828
[16]   A LINKAGE MAP OF HUMAN CHROMOSOME-21 - 43 PCR MARKERS AT AVERAGE INTERVALS OF 2.5 CM [J].
MCINNIS, MG ;
CHAKRAVARTI, A ;
BLASCHAK, J ;
PETERSEN, MB ;
SHARMA, V ;
AVRAMOPOULOS, D ;
BLOUIN, JL ;
KONIG, U ;
BRAHE, C ;
MATISE, TC ;
WARREN, AC ;
TALBOT, CC ;
VAN BROECKHOVEN, C ;
LITT, M ;
ANTONARAKIS, SE .
GENOMICS, 1993, 16 (03) :562-571
[17]   AN INTEGRATED YAC-OVERLAP AND COSMID-POCKET MAP OF THE HUMAN-CHROMOSOME-21 [J].
NIZETIC, D ;
GELLEN, L ;
HAMVAS, RMJ ;
MOTT, R ;
GRIGORIEV, A ;
VATCHEVA, R ;
ZEHETNER, G ;
YASPO, ML ;
DUTRIAUX, A ;
LOPES, C ;
DELABAR, JM ;
VAN BROECKHOVEN, C ;
POTIER, MC ;
LEHRACH, H .
HUMAN MOLECULAR GENETICS, 1994, 3 (05) :759-770
[18]  
PARK JP, 1987, CLIN GENET, V32, P342
[19]   DENOVO 21Q INTERSTITIAL DELETION IN A RETARDED BOY WITH ULNO-FIBULAR DYSOSTOSIS [J].
REYNOLDS, JF ;
WYANDT, HE ;
KELLY, TE .
AMERICAN JOURNAL OF MEDICAL GENETICS, 1985, 20 (01) :173-180
[20]  
ROLAND B, 1990, CLIN GENET, V37, P423