AN INTRODUCTION TO FUNCTIONAL CENTRAL LIMIT-THEOREMS FOR DEPENDENT STOCHASTIC-PROCESSES

被引:71
作者
ANDREWS, DWK [1 ]
POLLARD, D [1 ]
机构
[1] YALE UNIV,DEPT STAT,NEW HAVEN,CT 06520
关键词
STRONG MIXING; FUNCTIONAL CENTRAL LIMIT THEOREM; EMPIRICAL PROCESS;
D O I
10.2307/1403549
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper shows how the modern machinery for generating abstract empirical central limit theorems can be applied to arrays of dependent variables. It develops a bracketing approximation (closely related to results of Philipp and Massart) based on a moment inequality for sums of strong mixing arrays, in an effort to illustrate the sorts of difficulty that need to be overcome when adapting the empirical process theory for independent variables. Some suggestions for further development are offered. The paper is largely self-contained.
引用
收藏
页码:119 / 132
页数:14
相关论文
共 37 条
[11]  
DOUKHAN P, 1983, CR ACAD SCI I-MATH, V297, P129
[12]  
DUDLEY R. M., 1981, STATISTICS RELATED T, P341
[13]   INVARIANCE-PRINCIPLES FOR SUMS OF BANACH-SPACE VALUED RANDOM ELEMENTS AND EMPIRICAL PROCESSES [J].
DUDLEY, RM ;
PHILIPP, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (04) :509-552
[14]   VARIANCE OF SET-INDEXED SUMS OF MIXING RANDOM-VARIABLES AND WEAK-CONVERGENCE OF SET-INDEXED PROCESSES [J].
GOLDIE, CM ;
GREENWOOD, PE .
ANNALS OF PROBABILITY, 1986, 14 (03) :817-839
[15]   CHARACTERIZATIONS OF SET-INDEXED BROWNIAN-MOTION AND ASSOCIATED CONDITIONS FOR FINITE-DIMENSIONAL CONVERGENCE [J].
GOLDIE, CM ;
GREENWOOD, PE .
ANNALS OF PROBABILITY, 1986, 14 (03) :802-816
[16]  
HALL P, 1980, MARTINGALE LIMIT THE
[17]   A FUNCTIONAL CENTRAL LIMIT-THEOREM FOR WEAKLY DEPENDENT SEQUENCES OF RANDOM-VARIABLES [J].
HERRNDORF, N .
ANNALS OF PROBABILITY, 1984, 12 (01) :141-153
[18]  
Ledoux M., 1991, PROBABILITY BANACH S
[19]   UNIFORM LIMIT-THEOREMS FOR HARRIS RECURRENT MARKOV-CHAINS [J].
LEVENTAL, S .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 80 (01) :101-118
[20]  
MASSART P, 1986, ANN I H POINCARE-PR, V22, P381