SYNCHRONIZATION OF UNSTABLE ORBITS USING ADAPTIVE-CONTROL

被引:34
作者
JOHN, JK
AMRITKAR, RE
机构
[1] Department of Physics, University of Poona
来源
PHYSICAL REVIEW E | 1994年 / 49卷 / 06期
关键词
D O I
10.1103/PhysRevE.49.4843
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a method of controlling nonlinear and chaotic systems which is able to synchronize the phase space trajectory to a desired unstable orbit. The desired orbit could be an unstable periodic orbit or a chaotic orbit. The method uses the procedure of adaptive control and introduces time dependent changes in the system parameters. The changes in the parameter values depend on the deviations of the variables of the system from the desired orbit and the deviations of the controlled parameters from their values corresponding to the desired orbit. We illustrate our method using the Lorenz and Rossler systems. We also show that our method may be useful for communication purposes.
引用
收藏
页码:4843 / 4848
页数:6
相关论文
共 29 条
  • [11] Kocarev L, 1992, INT J BIFURCATION CH, V2, P709, DOI DOI 10.1142/S0218127492000823
  • [12] ASYMPTOTICALLY SYNCHRONOUS CHAOTIC ORBITS IN SYSTEMS OF EXCITABLE ELEMENTS
    KOWALSKI, JM
    ALBERT, GL
    GROSS, GW
    [J]. PHYSICAL REVIEW A, 1990, 42 (10): : 6260 - 6263
  • [13] SYNCHRONIZATION OF CHAOTIC TRAJECTORIES USING CONTROL
    LAI, YC
    GREBOGI, C
    [J]. PHYSICAL REVIEW E, 1993, 47 (04): : 2357 - 2360
  • [14] CONTROLLING HAMILTONIAN CHAOS
    LAI, YC
    DING, MZ
    GREBOGI, C
    [J]. PHYSICAL REVIEW E, 1993, 47 (01): : 86 - 92
  • [15] SUPPRESSION OF CHAOS BY RESONANT PARAMETRIC PERTURBATIONS
    LIMA, R
    PETTINI, M
    [J]. PHYSICAL REVIEW A, 1990, 41 (02): : 726 - 733
  • [16] LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
  • [17] 2
  • [18] CONTROLLING CHAOS TO GENERATE APERIODIC ORBITS
    MEHTA, NJ
    HENDERSON, RM
    [J]. PHYSICAL REVIEW A, 1991, 44 (08): : 4861 - 4865
  • [19] CONTROLLING CHAOS
    OTT, E
    GREBOGI, C
    YORKE, JA
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (11) : 1196 - 1199
  • [20] Ott E., 1990, Chaos/Xaoc. Soviet-American Perspectives on Nonlinear Science, P153