FRACTIONAL LEGENDRE TRANSFORMATION

被引:4
作者
ALONSO, MA [1 ]
FORBES, GW [1 ]
机构
[1] UNIV ROCHESTER,INST OPT,ROCHESTER,NY 14627
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 19期
关键词
D O I
10.1088/0305-4470/28/19/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new transformation is defined that connects a function and its Legendre transform by means of a continuous free parameter. The cyclic behaviour of consecutive Legendre transformations is reflected in the periodic dependence of the new transform on this parameter. This transformation opens new options wherever the conventional Legendre transformation is used (including mechanics, thermodynamics and optics) and is suggestively derived here by considering the geometrical-optics limit of a diffraction integral. The connection to a classical limit of the fractional Fourier transformation is also established and the mathematical and geometrical properties of the transformation are demonstrated.
引用
收藏
页码:5509 / 5527
页数:19
相关论文
共 25 条
[11]  
Goldstein H., 1980, CLASSICAL MECH, V2nd ed
[12]  
Goodman J., 2005, INTRO FOURIER OPTICS
[13]   FRESNEL TRANSFORM AND SAMPLING THEOREM [J].
GORI, F .
OPTICS COMMUNICATIONS, 1981, 39 (05) :293-297
[14]   IMAGE ROTATION, WIGNER ROTATION, AND THE FRACTIONAL FOURIER-TRANSFORM [J].
LOHMANN, AW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (10) :2181-2186
[15]  
Maslov V. P., 1981, SEMICLASSICAL APPROX
[16]   ON NAMIASS FRACTIONAL FOURIER-TRANSFORMS [J].
MCBRIDE, AC ;
KERR, FH .
IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 39 (02) :159-175
[17]   FRACTIONAL FOURIER-TRANSFORMS AND THEIR OPTICAL IMPLEMENTATION .1. [J].
MENDLOVIC, D ;
OZAKTAS, HM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (09) :1875-1881
[18]  
MENDLOVIC D, 1995, FRACTIONAL FOURIER T
[19]  
MUSTARD D, 1995, IN PRESS J AUSTRAL B
[20]  
NAMIAS V, 1980, J I MATH APPL, V25, P241