EXPLICIT SOLUTIONS OF THE BETHE-ANSATZ EQUATIONS FOR BLOCH ELECTRONS IN A MAGNETIC-FIELD

被引:45
作者
HATSUGAI, Y [1 ]
KOHMOTO, M [1 ]
WU, YS [1 ]
机构
[1] UNIV UTAH,DEPT PHYS,SALT LAKE CITY,UT 84112
关键词
D O I
10.1103/PhysRevLett.73.1134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For Bloch electrons in a magnetic field, explicit solutions are obtained at the center of the spectrum for the Bethe ansatz equations of Wiegmann and Zabrodin. When the magnetic flux per plaquette is 1/Q with Q an odd integer, distribution of the roots of the Bethe ansatz equation is uniform except at two points on the unit circle in the complex plane. For the semiclassical limit Q --> infinity, the wave function is \psi(x)\2 = (2/sin pix), which is critical and unnormalizable. For the golden-mean flux, the distribution of roots has exact self-similarity and the distribution function is nowhere differentiable. The corresponding wave function also shows a clear self-similar structure.
引用
收藏
页码:1134 / 1137
页数:4
相关论文
共 15 条
[11]   PEIERLS STABILIZATION OF MAGNETIC-FLUX STATES OF 2-DIMENSIONAL LATTICE ELECTRONS [J].
KOHMOTO, M ;
HATSUGAI, Y .
PHYSICAL REVIEW B, 1990, 41 (13) :9527-9529
[12]   QUASI-PERIODIC LATTICE - ELECTRONIC-PROPERTIES, PHONON PROPERTIES, AND DIFFUSION [J].
KOHMOTO, M ;
BANAVAR, JR .
PHYSICAL REVIEW B, 1986, 34 (02) :563-566
[14]   QUANTIZED HALL CONDUCTANCE IN A TWO-DIMENSIONAL PERIODIC POTENTIAL [J].
THOULESS, DJ ;
KOHMOTO, M ;
NIGHTINGALE, MP ;
DENNIJS, M .
PHYSICAL REVIEW LETTERS, 1982, 49 (06) :405-408
[15]  
THOULESS DJ, 1983, J PHYS A-MATH GEN, V16, P1911, DOI 10.1088/0305-4470/16/9/015