HIGH-ORDER SYMPLECTIC RUNGE-KUTTA-NYSTROM METHODS

被引:63
作者
CALVO, MP
SANZSERNA, JM
机构
关键词
RUNGE-KUTTA-NYSTROM METHODS; SYMPLECTIC INTEGRATION; HAMILTONIAN PROBLEMS; ORDER CONDITIONS;
D O I
10.1137/0914073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical method for ordinary differential equations is called symplectic if, when applied to Hamiltonian problems, it preserves the symplectic structure in phase space, thus reproducing the main qualitative property of solutions of Hamiltonian systems. The authors construct and test symplectic, explicit Runge-Kutta-Nystrom (RKN) methods of order 8. The outcome of the investigation is that existing high-order, symplectic RKN formulae require so many evaluations per step that they are much less efficient than conventional eighth-order nonsymplectic, variable-step-size integrators even for low accuracy. However, symplectic integration is of use in the study of qualitative features of the systems being integrated.
引用
收藏
页码:1237 / 1252
页数:16
相关论文
共 21 条
[1]  
ABIA L, IN PRESS MATH COMP
[2]  
Arnold, 2013, MATH METHODS CLASSIC
[3]  
CALVO JP, 1992, THESIS U VALLADOLID
[4]   ORDER CONDITIONS FOR CANONICAL RUNGE-KUTTA-NYSTROM METHODS [J].
CALVO, MP ;
SANZSERNA, JM .
BIT, 1992, 32 (01) :131-142
[5]   THE DEVELOPMENT OF VARIABLE-STEP SYMPLECTIC INTEGRATORS, WITH APPLICATION TO THE 2-BODY PROBLEM [J].
CALVO, MP ;
SANZSERNA, JM .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (04) :936-952
[6]  
CALVO MP, 1992, NUMERICAL ANALYSIS, P32
[7]  
CALVO MP, 1991, APPLIED MATH COMPUTA
[8]  
Cash J.R, 1992, COMPUTATIONAL ORDINA, P437
[9]   FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) :235-250
[10]   CORRECTION [J].
DORMAND, JR .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1991, 11 (02) :297-297