FERROUS IRON RELEASE FROM TRANSFERRIN BY HUMAN NEUTROPHIL-DERIVED SUPEROXIDE ANION - EFFECT OF PH AND IRON SATURATION

被引:51
作者
BRIELAND, JK [1 ]
FANTONE, JC [1 ]
机构
[1] UNIV MICHIGAN,SCH MED,DEPT PATHOL,ANN ARBOR,MI 48104
关键词
D O I
10.1016/0003-9861(91)90266-L
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ability of superoxide anion (O2-) from stimulated human neutrophils (PMNs) to release ferrous iron (Fe2+) from transferrin was assessed. At pH 7.4, unstimulated PMNs released minimal amounts of O2- and failed to facilitate the release of Fe2+ from holosaturated transferrin. In contrast, incubation of phorbol myristate acetate (PMA)-stimulated PMNs with holosaturated transferrin at pH 7.4 enhanced the release of Fe2+ from transferrin eightfold in association with marked generation of O2-. The release of Fe2+ was inhibited by addition of superoxide dismutase (SOD), indicating that the release of Fe2+ was dependent on PMN-derived extracellular O2-. In contrast, at physiologic pH (7.4), incubation of transferrin at physiological levels of iron saturation (e.g. 32%) with unstimulated or PMA stimulated PMNs failed to facilitate the release of Fe2+. The effect of decreasing the pH on the release of Fe2+ from transferrin by PMN-derived O2- was determined. Decreasing the pH greatly facilitated the release of Fe2+ from both holosaturated transferrin and from transferrin at physiological levels of iron saturation by PMN-derived O2-. Release of Fe2+ occurred despite a decrease in the amount of extracellular O2- generated by PMNs in an acidic environment. These results suggest that transferrin at physiologic levels of iron saturation may serve as a source of Fe2+ for biological reactions in disease states where activated phagocytes are present and there is a decrease in tissue pH. The unbound iron could participate in biological reactions including promoting propagation of lipid peroxidation reactions or hydroxyl radical formation following reaction with phagocytic cell-derived hydrogen peroxide. © 1991.
引用
收藏
页码:78 / 83
页数:6
相关论文
共 31 条