Extinction is defined as the loss of cell type-specific gene expression that occurs in somatic cell hybrids derived by fusion of cells with dissimilar phenotypes. To explore the basis of this dominant-negative regulation, we have studied the activities of the control elements of the liver-specific gene encoding tyrosine aminotransferase (TAT) in hepatoma/fibroblast hybrid crosses. We show that extinction in complete somatic cell hybrids is accompanied by the loss of activity of all known cell type-specific control elements of the TAT gene. This inactivity is the result of first, lack of expression of genes coding for the transcriptional activators HNF4 and HNF3beta and HNF3gamma, which bind to essential elements of the enhancers; and second, loss of in vivo binding and activity of ubiquitous factors to these enhancers, including CREB, which is the target for repression by the tissue-specific extinguisher locus TSE1. Complete extinction of TAT gene activity is therefore a multifactorial process affecting all three enhancers controlling liver-specific and hormone-inducible expression. It results from lack of activation, rather than active repression, and involves both post-translational modification and loss of essential transcriptional activators.