A FOKKER-PLANCK EQUATION FOR CANONICAL NON-MARKOVIAN SYSTEMS - A LOCAL LINEARIZATION APPROACH

被引:31
作者
GRIGOLINI, P [1 ]
机构
[1] UNIV CALIF SAN DIEGO,INST NONLINEAR SCI R002,LA JOLLA,CA 92093
关键词
D O I
10.1063/1.454812
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页码:4300 / 4308
页数:9
相关论文
共 30 条
[21]   ON THE EXACT AND PHENOMENOLOGICAL LANGEVIN-EQUATIONS FOR A HARMONIC-OSCILLATOR IN A FLUID [J].
MOHANTY, U ;
SHULER, KE ;
OPPENHEIM, I .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1982, 115 (1-2) :1-20
[22]   TRANSPORT COLLECTIVE MOTION AND BROWNIAN MOTION [J].
MORI, H .
PROGRESS OF THEORETICAL PHYSICS, 1965, 33 (03) :423-+
[23]   NON-MARKOVIAN DYNAMICS AND BARRIER CROSSING RATES AT HIGH-VISCOSITY [J].
OKUYAMA, S ;
OXTOBY, DW .
JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (10) :5830-5835
[24]   THEORY OF ACTIVATED RATE-PROCESSES - A NEW DERIVATION OF KRAMERS EXPRESSION [J].
POLLAK, E .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (02) :865-867
[25]   NON-MARKOVIAN ACTIVATED RATE-PROCESSES - COMPARISON OF CURRENT THEORIES WITH NUMERICAL-SIMULATION DATA [J].
STRAUB, JE ;
BORKOVEC, M ;
BERNE, BJ .
JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (03) :1788-1794
[26]  
ZHU SB, IN PRESS J CHEM PHYS
[27]  
ZHU SB, UNPUB J PHYS CHEM
[28]  
ZWANZIG R, 1987, J CHEM PHYS, V86, P58801
[29]  
Zwanzig R., 1973, J STAT PHYS, V9, P215, DOI DOI 10.1007/BF01008729
[30]  
ZWANZIG R, 1980, LECTURE NOTES PHYSIC, V132, P198