A genetic model of oscillating cortex, which assumes "minimal" coupling justified by known anatomy, is shown to function as an associative memory, using previously developed theory. The network has explicit excitatory neurons with local inhibitory interneuron feedback that forms a set of nonlinear oscillators coupled only by long-range excitatory connections. Using a local Hebb-like learning rule for primary and higher-order synapses at the ends of the long-range connections, the system learns to store the kinds of oscillation amplitude patterns observed in olfactory and visual cortex. In olfaction, these patterns "emerge" during respiration by a pattern forming phase transition which we characterize in the model as a multiple Hopf bifurcation. We argue that these bifurcations play an important role in the operation of real digital computers and neural networks, and we use bifurcation theory to derive learning rules which analytically guarantee CAM storage of continuous periodic sequences-capacity: N/2 Fourier components for an N-node network-no "spurious" attractors. © 1990.