DETERMINING REGULAR ORBITS IN THE PRESENCE OF IRREGULAR TRAJECTORIES USING OPTIMAL-CONTROL THEORY

被引:3
作者
BOTINA, J [1 ]
RABITZ, H [1 ]
RAHMAN, N [1 ]
机构
[1] UNIV TRIESTE,DIPARTIMENTO SCI CHIM,I-34127 TRIESTE,ITALY
关键词
D O I
10.1063/1.470393
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two general algorithms are presented to determine regular orbits in the presence of irregular trajectories in a phase space of n degrees of freedom. The first algorithm searches for regular orbits with the energy as a free-floating parameter. The second algorithm seeks regular orbits at constant energy. These two approaches utilize optimal control theory to employ a small external control field that permits a search among the irregular motion for the regular orbits. The optimizing algorithm naturally seeks regular orbits with the control field turned off. Numerical results with a chaotic Hamiltonian show the method to be effective in determining regular trajectories. If the system is completely chaotic in some region, the method determines which initial condition is the best one in order to achieve a nearly regular orbit. (C) 1995 American Institute of Physics.
引用
收藏
页码:6637 / 6644
页数:8
相关论文
共 36 条
[11]   SEMICLASSICAL SPECTRAL QUANTIZATION - MOLECULAR-ENERGIES AND EIGENFUNCTIONS [J].
DELEON, N ;
MEHTA, MA .
COMPUTER PHYSICS REPORTS, 1988, 8 (06) :293-318
[12]  
DOEDEL E, 1991, INT J BIFURCAT CHAOS, V1, P745, DOI DOI 10.1142/S0218127491000555
[13]   NUMERICAL COMPUTATION AND CONTINUATION OF INVARIANT-MANIFOLDS CONNECTING FIXED-POINTS [J].
FRIEDMAN, MJ ;
DOEDEL, EJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :789-808
[14]   PERIODIC ORBITS AND CLASSICAL QUANTIZATION CONDITIONS [J].
GUTZWILL.MC .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (03) :343-&
[15]  
GUTZWILLER M., 1990, CHAOS CLASSICAL QUAN
[16]   BOUND-STATE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC HAMILTONIAN-SYSTEMS - SCARS OF PERIODIC-ORBITS [J].
HELLER, EJ .
PHYSICAL REVIEW LETTERS, 1984, 53 (16) :1515-1518
[17]   DERPER - AN ALGORITHM FOR THE CONTINUATION OF PERIODIC-SOLUTIONS IN ORDINARY DIFFERENTIAL-EQUATIONS [J].
HOLODNIOK, M ;
KUBICEK, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (02) :254-267
[18]   TEACHING LASERS TO CONTROL MOLECULES [J].
JUDSON, RS ;
RABITZ, H .
PHYSICAL REVIEW LETTERS, 1992, 68 (10) :1500-1503
[19]   OPTICAL CONTROL OF MOLECULAR-DYNAMICS - MOLECULAR CANNONS, REFLECTRONS, AND WAVE-PACKET FOCUSERS [J].
KRAUSE, JL ;
WHITNELL, RM ;
WILSON, KR ;
YAN, YJ ;
MUKAMEL, S .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (09) :6562-6578
[20]   OPTIMAL STIMULATION OF A CONSERVATIVE NONLINEAR OSCILLATOR - CLASSICAL AND QUANTUM-MECHANICAL CALCULATIONS [J].
KREMPL, S ;
EISENHAMMER, T ;
HUBLER, A ;
MAYERKRESS, G ;
MILONNI, PW .
PHYSICAL REVIEW LETTERS, 1992, 69 (03) :430-433