STATISTICS OF OSCILLATOR-STRENGTHS IN CHAOTIC SYSTEMS

被引:21
作者
TANIGUCHI, N [1 ]
ANDREEV, AV [1 ]
ALTSHULER, BL [1 ]
机构
[1] NEC RES INST, PRINCETON, NJ 08540 USA
来源
EUROPHYSICS LETTERS | 1995年 / 29卷 / 07期
关键词
D O I
10.1209/0295-5075/29/7/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The statistical description of oscillator strengths for systems like hydrogen in a magnetic field is developed by using the supermatrix nonlinear sigma-model. The correlator of oscillator strengths is found to have a universal parametric and frequency dependence, and its analytical expression is given. This universal expression applies to quantum chaotic systems with the same generality as Wigner-Dyson statistics.
引用
收藏
页码:515 / 520
页数:6
相关论文
共 19 条
[1]   TRANSITION-STRENGTH FLUCTUATIONS AND THE ONSET OF CHAOTIC MOTION [J].
ALHASSID, Y ;
LEVINE, RD .
PHYSICAL REVIEW LETTERS, 1986, 57 (23) :2879-2882
[2]  
BERRY M, 1991, LES HOUCH S, V52, P251
[3]  
Bogomol'nyi E. B., 1989, Soviet Physics - JETP, V69, P275
[4]   QUANTUM CHAOS AND STATISTICAL PROPERTIES OF ENERGY-LEVELS - NUMERICAL STUDY OF THE HYDROGEN-ATOM IN A MAGNETIC-FIELD [J].
DELANDE, D ;
GAY, JC .
PHYSICAL REVIEW LETTERS, 1986, 57 (16) :2006-2009
[5]  
DELANDE D, 1992, LES HOUCH S, V53, P381
[6]   SUPERSYMMETRY AND THEORY OF DISORDERED METALS [J].
EFETOV, KB .
ADVANCES IN PHYSICS, 1983, 32 (01) :53-127
[7]   THE PARAMETRIC NUMBER VARIANCE [J].
GOLDBERG, J ;
SMILANSKY, U ;
BERRY, MV ;
SCHWEIZER, W ;
WUNNER, G ;
ZELLER, G .
NONLINEARITY, 1991, 4 (01) :1-14
[8]   DISTRIBUTION OF MULTIPLE AVOIDED CROSSINGS - NUMERICAL EVALUATION [J].
GOLDBERG, J ;
SCHWEIZER, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (12) :2785-2791
[9]  
GUTZWILLER M., 1990, CHAOS CLASSICAL QUAN
[10]  
KLEPPNER K, 1992, FUNDAMENTAL SYSTEMS, P417