Is the Gut Microbiota a New Factor Contributing to Obesity and Its Metabolic Disorders?

被引:186
作者
Harris, Kristina [1 ]
Kassis, Amira [2 ]
Major, Genevieve [2 ]
Chou, Chieh J. [2 ]
机构
[1] Penn State Univ, Dept Nutr Sci, University Pk, PA 16802 USA
[2] Nestle Res Ctr, Nutr & Hlth Dept, Route Jorat 57, CH-1000 Lausanne 26, Switzerland
关键词
D O I
10.1155/2012/879151
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The gut microbiota refers to the trillions of microorganisms residing in the intestine and is integral in multiple physiological processes of the host. Recent research has shown that gut bacteria play a role in metabolic disorders such as obesity, diabetes, and cardiovascular diseases. The mechanisms by which the gut microbiota affects metabolic diseases are by two major routes: (1) the innate immune response to the structural components of bacteria (e.g., lipopolysaccharide) resulting in inflammation and (2) bacterial metabolites of dietary compounds (e.g., SCFA from fiber), which have biological activities that regulate host functions. Gut microbiota has evolved with humans as a mutualistic partner, but dysbiosis in a form of altered gut metagenome and collected microbial activities, in combination with classic genetic and environmental factors, may promote the development of metabolic disorders. This paper reviews the available literature about the gut microbiota and aforementioned metabolic disorders and reveals the gaps in knowledge for future study.
引用
收藏
页数:14
相关论文
共 111 条
[1]   Mammalian Toll-like receptors [J].
Akira, S .
CURRENT OPINION IN IMMUNOLOGY, 2003, 15 (01) :5-11
[2]   Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing [J].
Andersson, Anders F. ;
Lindberg, Mathilda ;
Jakobsson, Hedvig ;
Backhed, Fredrik ;
Nyren, Pal ;
Engstrand, Lars .
PLOS ONE, 2008, 3 (07)
[3]  
[Anonymous], 2007, OB OV
[4]   The gut microbiota as an environmental factor that regulates fat storage [J].
Bäckhed, F ;
Ding, H ;
Wang, T ;
Hooper, LV ;
Koh, GY ;
Nagy, A ;
Semenkovich, CF ;
Gordon, JI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (44) :15718-15723
[5]   Mechanisms underlying the resistance to diet-induced obesity in germ-free mice [J].
Backhed, Fredrik ;
Manchester, Jill K. ;
Semenkovich, Clay F. ;
Gordon, Jeffrey I. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (03) :979-984
[6]   A cell biological view of Toll-like receptor function: regulation through compartmentalization [J].
Barton, Gregory M. ;
Kagan, Jonathan C. .
NATURE REVIEWS IMMUNOLOGY, 2009, 9 (08) :535-542
[7]   Molecular analysis of the bacterial microbiota in the human stomach [J].
Bik, EM ;
Eckburg, PB ;
Gill, SR ;
Nelson, KE ;
Purdom, EA ;
Francois, F ;
Perez-Perez, G ;
Blaser, MJ ;
Relman, DA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (03) :732-737
[8]   Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet [J].
Bjursell, Mikael ;
Admyre, Therese ;
Goransson, Melker ;
Marley, Anna E. ;
Smith, David M. ;
Oscarsson, Jan ;
Bohlooly-Y, Mohammad .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2011, 300 (01) :E211-E220
[9]   The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids [J].
Brown, AJ ;
Goldsworthy, SM ;
Barnes, AA ;
Eilert, MM ;
Tcheang, L ;
Daniels, D ;
Muir, AI ;
Wigglesworth, MJ ;
Kinghorn, I ;
Fraser, NJ ;
Pike, NB ;
Strum, JC ;
Steplewski, KM ;
Murdock, PR ;
Holder, JC ;
Marshall, FH ;
Szekeres, PG ;
Wilson, S ;
Ignar, DM ;
Foord, SM ;
Wise, A ;
Dowell, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (13) :11312-11319
[10]   Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype [J].
Calvani, R. ;
Miccheli, A. ;
Capuani, G. ;
Miccheli, A. Tomassini ;
Puccetti, C. ;
Delfini, M. ;
Iaconelli, A. ;
Nanni, G. ;
Mingrone, G. .
INTERNATIONAL JOURNAL OF OBESITY, 2010, 34 (06) :1095-1098