Exogenously administered fructose 1,6-bisphosphate reportedly protects ischemic or hypoxic tissue and facilitates metabolic recovery. The mechanism of action of exogenous fructose 1,6-bisphosphate has been an issue of considerable debate, since there is a lack of direct evidence that fructose 1,6-bisphosphate can cross the cell membrane and act as an intermediate in glycolysis. We synthesized [1,6-C-13]fructose 1,6-bisphosphate and directly examined its cellular metabolism in hog carotid artery segments using C-13-nuclear magnetic resonance (NMR) spectroscopy. [1,6-C-13]fructose 1,6-bisphosphate (2.1 mM) was metabolized by hog carotid artery during normoxia and hypoxia with a major metabolic product being [3-C-13]lactate. The production of [3-C-13]lactate was greater during hypoxia than during normoxia, indicating that fructose 1,6-bisphosphate metabolism responded to the energetic state of the tissue. We found that exogenously added fructose 1,6-bisphosphate at 2.1 mM did not significantly improve the ability of hypoxic hog carotid artery to maintain isometric force, whereas 20 mM fructose 1,6-bisphosphate did significantly, although modestly, improve isometric force maintenance. These results indicate that exogenously added fructose 1,6-bisphosphate is capable of entering cells and serving as a glycolytic intermediate.