RANDOM-WALKS IN ASYMMETRIC RANDOM-ENVIRONMENTS

被引:63
作者
BRICMONT, J [1 ]
KUPIAINEN, A [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
关键词
D O I
10.1007/BF02102067
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider random walks on Z(d) with transitions rates p(x, y) given by a random matrix. If p is a small random perturbation of the simple random walk, we show that the walk remains diffusive for almost all environments p if d > 2. The result also holds for a continuous time Markov process with a random drift. The corresponding path space measures converge weakly, in the scaling limit, to the Wiener process, for almost every p.
引用
收藏
页码:345 / 420
页数:76
相关论文
共 18 条
[1]   SYMMETRIC RANDOM-WALKS IN RANDOM-ENVIRONMENTS [J].
ANSHELEVICH, VV ;
KHANIN, KM ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (03) :449-470
[2]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[3]   ANOMALOUS DIFFUSION IN RANDOM-MEDIA OF ANY DIMENSIONALITY [J].
BOUCHAUD, JP ;
COMTET, A ;
GEORGES, A ;
LEDOUSSAL, P .
JOURNAL DE PHYSIQUE, 1987, 48 (09) :1445-1450
[4]  
BRAMSON M, 1988, COMMUN MATH PHYS, V119, P119
[5]  
BRAMSON M, RANDOM WALK RANDOM E
[6]   PHASE-TRANSITION IN THE 3D RANDOM FIELD ISING-MODEL [J].
BRICMONT, J ;
KUPIAINEN, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 116 (04) :539-572
[7]   AN INVARIANCE-PRINCIPLE FOR REVERSIBLE MARKOV-PROCESSES - APPLICATIONS TO RANDOM MOTIONS IN RANDOM-ENVIRONMENTS [J].
DEMASI, A ;
FERRARI, PA ;
GOLDSTEIN, S ;
WICK, WD .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) :787-855
[8]   DIFFUSION ON A RANDOM LATTICE - WEAK-DISORDER EXPANSION IN ARBITRARY DIMENSION [J].
DERRIDA, B ;
LUCK, JM .
PHYSICAL REVIEW B, 1983, 28 (12) :7183-7190
[9]   MULTIDIMENSIONAL RANDOM-WALKS IN RANDOM-ENVIRONMENTS WITH SUB-CLASSICAL LIMITING BEHAVIOR [J].
DURRETT, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (01) :87-102
[10]   RANDOM-WALKS IN RANDOM-ENVIRONMENTS [J].
FISHER, DS .
PHYSICAL REVIEW A, 1984, 30 (02) :960-964