RANDOM-WALKS IN ASYMMETRIC RANDOM-ENVIRONMENTS

被引:63
作者
BRICMONT, J [1 ]
KUPIAINEN, A [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
关键词
D O I
10.1007/BF02102067
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider random walks on Z(d) with transitions rates p(x, y) given by a random matrix. If p is a small random perturbation of the simple random walk, we show that the walk remains diffusive for almost all environments p if d > 2. The result also holds for a continuous time Markov process with a random drift. The corresponding path space measures converge weakly, in the scaling limit, to the Wiener process, for almost every p.
引用
收藏
页码:345 / 420
页数:76
相关论文
共 18 条
[12]   WEAK-CONVERGENCE OF A RANDOM-WALK IN A RANDOM ENVIRONMENT [J].
LAWLER, GF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :81-87
[13]   DIFFUSION IN A RANDOM MEDIUM - A RENORMALIZATION-GROUP APPROACH [J].
LUCK, JM .
NUCLEAR PHYSICS B, 1983, 225 (02) :169-184
[14]   RANDOM-WALK IN A RANDOM ENVIRONMENT AND 1/F NOISE [J].
MARINARI, E ;
PARISI, G ;
RUELLE, D ;
WINDEY, P .
PHYSICAL REVIEW LETTERS, 1983, 50 (17) :1223-1225
[15]   ON THE INTERPRETATION OF 1/F NOISE [J].
MARINARI, E ;
PARISI, G ;
RUELLE, D ;
WINDEY, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (01) :1-12
[16]  
PAPANICOLAOU G, 1981, J BOLYAI SERIES, P835
[17]  
Papanicolaou G. C., 1982, INSTATISTICS PROBABI, P547
[18]  
Sinai Y., 1982, TEOR VEROYATNOST PRI, V27, P247