DRESSING SYMMETRIES

被引:74
作者
BABELON, O [1 ]
BERNARD, D [1 ]
机构
[1] SERV PHYS THEOR SACLAY,F-91191 GIF SUR YVETTE,FRANCE
关键词
D O I
10.1007/BF02097626
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the group of dressing transformations in soliton theories. We show that it is generated by the monodromy matrix. This provides a new proof of their Lie-Poisson property. We treat in detail the examples of the Toda field theories and the Heisenberg model. We show that the group of dressing transformations is the classical precursor of the various manifestations of quantum groups in these models, e.g. algebraic Bethe ansatz, non-local currents, or quantum group symmetries. Finally, we define field multiplets supporting a linear representation of the dressing group and we show that their exchange algebras are encoded in the classical double.
引用
收藏
页码:279 / 306
页数:28
相关论文
共 30 条
[1]   GROUPS OF DRESSING TRANSFORMATIONS FOR INTEGRABLE MODELS IN DIMENSION 2 [J].
AVAN, J ;
BELLON, M .
PHYSICS LETTERS B, 1988, 213 (04) :459-465
[2]   EXTENDED CONFORMAL ALGEBRA AND THE YANG-BAXTER EQUATION [J].
BABELON, O .
PHYSICS LETTERS B, 1988, 215 (03) :523-529
[3]   DRESSING TRANSFORMATIONS AND THE ORIGIN OF THE QUANTUM GROUP SYMMETRIES [J].
BABELON, O ;
BERNARD, D .
PHYSICS LETTERS B, 1991, 260 (1-2) :81-86
[4]   JIMBO Q-ANALOGUES AND CURRENT-ALGEBRAS [J].
BABELON, O .
LETTERS IN MATHEMATICAL PHYSICS, 1988, 15 (02) :111-117
[5]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[6]  
BELAVIN AA, 1984, SOV SCI REV C, V4, P94
[7]   QUANTUM GROUP SYMMETRIES AND NONLOCAL CURRENTS IN 2D QFT [J].
BERNARD, D ;
LECLAIR, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (01) :99-138
[8]   HIDDEN YANGIANS IN 2D MASSIVE CURRENT-ALGEBRAS [J].
BERNARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (01) :191-208
[9]   QUANTUM GROUP SYMMETRIES IN 2-DIMENSIONAL LATTICE QUANTUM-FIELD THEORY [J].
BERNARD, D ;
FELDER, G .
NUCLEAR PHYSICS B, 1991, 365 (01) :98-120
[10]   TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS .4. A NEW HIERARCHY OF SOLITON-EQUATIONS OF KP-TYPE [J].
DATE, E ;
JIMBO, M ;
KASHIWARA, M ;
MIWA, T .
PHYSICA D, 1982, 4 (03) :343-365