COUNTING TRIANGLE CROSSINGS AND HALVING PLANES

被引:37
作者
DEY, TK [1 ]
EDELSBRUNNER, H [1 ]
机构
[1] UNIV ILLINOIS,DEPT COMP SCI,URBANA,IL 61801
关键词
D O I
10.1007/BF02574381
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Every collection of t greater than or equal to 2n(2) triangles with a total of n vertices in R(3) has Omega(t(4)/n(6)) crossing pairs. This implies that one of their edges meets Omega(t(3)/n(6)) of the triangles. From this it follows that n points in R(3) have only O(n(8/3)) halving planes.
引用
收藏
页码:281 / 289
页数:9
相关论文
共 9 条
[1]  
Ajtai M., 1982, ANN DISCRETE MATH, V12, P9
[2]  
Alon N., 1992, COMB PROBAB COMPUT, V1, P189
[3]  
[Anonymous], 1987, EATCS MONOGRAPHS THE
[4]   POINTS AND TRIANGLES IN THE PLANE AND HALVING PLANES IN SPACE [J].
ARONOV, B ;
CHAZELLE, B ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WENGER, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :435-442
[5]  
BARANY I, 1989, 5TH P ANN S COMP GEO, P140
[6]   IMPROVED BOUNDS FOR INTERSECTING TRIANGLES AND HALVING PLANES [J].
EPPSTEIN, D .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (01) :176-182
[7]  
ERDOS P, 1973, SURVEY COMBINATORIAL, P1398
[8]   Amounts of convex bodies which contain a common point [J].
Radon, J .
MATHEMATISCHE ANNALEN, 1921, 83 :113-115
[9]  
ZIVALJEVIC RT, 1992, J COMB THEORY A, V61, P309