RELATIVISTIC CALOGERO-MOSER MODEL AS GAUGED WZW THEORY

被引:114
作者
GORSKY, A [1 ]
NEKRASOV, N [1 ]
机构
[1] PRINCETON UNIV,DEPT PHYS,JOSEPH HENRY LABS,PRINCETON,NJ 08544
关键词
D O I
10.1016/0550-3213(94)00499-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Integrable deformation of the Calogero-Moser system is examined in the framework of the topological G/G Wess-Zumino-Witten model. It is shown that in the Hamiltonian approach the gauged WZW theory has a Hilbert space, which contains the one of the Ruijsenaars model, The latter can be described with the help of Verlinde algebra. Moreover, the evolution operator in the quantum mechanical problem has an interpretation in terms of the path integral in G/G theory with inserted Wilson line, We compute a partition function of the model using techniques from Chem-Simons theory, in particular, some surgeries of simple threefolds,
引用
收藏
页码:582 / 608
页数:27
相关论文
共 37 条
[1]   FROM GEOMETRIC-QUANTIZATION TO CONFORMAL FIELD-THEORY [J].
ALEKSEEV, A ;
SHATASHVILI, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 128 (01) :197-212
[2]  
BERNARD D, SPHT93006
[3]   EXPLICIT SOLUTION TO THE N-BODY CALOGERO PROBLEM [J].
BRINK, L ;
HANSSON, TH ;
VASILIEV, MA .
PHYSICS LETTERS B, 1992, 286 (1-2) :109-111
[5]  
CHEREDNIK I, RIMS 91
[6]  
DOUGLAS MR, HEPTH9409098
[7]  
DUNKL CF, 1989, T AM MATH SOC, V311
[8]  
ETINGOF P, 1992, CENTRAL EXTENSIONS C
[9]  
ETINGOF PI, HEPTH9312103
[10]  
FOCK V, ITEP2793