SOLITON SOLUTION OF A SINGULARLY PERTURBED KDV EQUATION

被引:21
作者
HAI, WH
XIAO, Y
机构
[1] HUNAN EDUC INST,CHANGSHA 410012,PEOPLES R CHINA
[2] HUAZHONG UNIV SCI & TECHNOL,DEPT PHYS,WUHAN 430074,PEOPLES R CHINA
关键词
D O I
10.1016/0375-9601(95)00729-M
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a fifth-order singularly perturbed KdV equation. The direct perturbation method for solving it is investigated in the first order approximation for the travelling wave case. The application of the method leads to a general soliton of the first-order equation, which describes some arrays of wave crests. Analysis of the solution shows that the perturbation makes the soliton lower and narrower than an unperturbed KdV soliton.
引用
收藏
页码:79 / 83
页数:5
相关论文
共 10 条
[1]   WEAKLY NONLOCAL SOLITONS FOR CAPILLARY-GRAVITY WAVES - 5TH-DEGREE KORTEWEG-DEVRIES EQUATION [J].
BOYD, JP .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 48 (01) :129-146
[2]  
FABRIKANT AL, 1984, ZH EKSP TEOR FIZ, V86, P470
[3]  
GORSHKOV KA, 1981, PHYSICA D, V1, P424
[4]   A NOTE ON THE INTERACTION BETWEEN SOLITARY WAVES IN A SINGULARLY-PERTURBED KORTEWEG-DEVRIES EQUATION [J].
GRIMSHAW, R ;
MALOMED, BA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (16) :4087-4091
[5]  
KARPMAN VI, 1981, PHYSICA D, V1, P142
[6]   BOUND SOLITONS IN THE NONLINEAR SCHRODINGER-GINZBURG-LANDAU EQUATION [J].
MALOMED, BA .
PHYSICAL REVIEW A, 1991, 44 (10) :6954-6957
[7]   DAMPED DOUBLE SOLITONS IN THE NON-LINEAR SCHRODINGER EQUATION [J].
PEREIRA, NR ;
CHU, FYF .
PHYSICS OF FLUIDS, 1979, 22 (05) :874-881
[8]   NONLINEAR SCHRODINGER EQUATION INCLUDING GROWTH AND DAMPING [J].
PEREIRA, NR ;
STENFLO, L .
PHYSICS OF FLUIDS, 1977, 20 (10) :1733-1734
[9]   STRUCTURAL STABILITY OF THE KORTEWEG-DEVRIES SOLITONS UNDER A SINGULAR PERTURBATION [J].
POMEAU, Y ;
RAMANI, A ;
GRAMMATICOS, B .
PHYSICA D, 1988, 31 (01) :127-134
[10]  
Wu D., 1987, CALCULUS VARIATIONS