ALGORITHM FOR DEGREE REDUCTION OF B-SPLINE CURVES

被引:41
作者
PIEGL, L [1 ]
TILLER, W [1 ]
机构
[1] GEOMWARE INC,TYLER,TX 75703
基金
美国国家科学基金会;
关键词
B-SPLINES; DEGREE REDUCTION; CURVES AND SURFACES;
D O I
10.1016/0010-4485(95)92150-Q
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An algorithmic approach to degree reduction of B-spline curves is presented. The method consists of the following steps: (a) decompose the B-spline curve into Bezier pieces on the fly, (b) degree reduce each Bezier piece, and (c) remove the unnecessary knots. A complete algorithm and precise error control are provided.
引用
收藏
页码:101 / 110
页数:10
相关论文
共 11 条
[1]  
Dannenberg L., 1985, Computer-Aided Geometric Design, V2, P123, DOI 10.1016/0167-8396(85)90015-9
[2]   DEGREE REDUCTION OF BEZIER CURVES [J].
ECK, M .
COMPUTER AIDED GEOMETRIC DESIGN, 1993, 10 (3-4) :237-251
[3]  
Farin G., 1993, CURVES SURFACES COMP
[4]   INTERACTIVE INTERPOLATION AND APPROXIMATION BY BEZIER POLYNOMIALS [J].
FORREST, AR .
COMPUTER JOURNAL, 1972, 15 (01) :71-&
[5]  
Lachance M. A., 1988, Computer-Aided Geometric Design, V5, P195, DOI 10.1016/0167-8396(88)90003-9
[6]  
Lyche T., 1987, Computer-Aided Geometric Design, V4, P217, DOI 10.1016/0167-8396(87)90013-6
[7]   SOFTWARE-ENGINEERING APPROACH TO DEGREE ELEVATION OF B-SPLINE CURVES [J].
PIEGL, L ;
TILLER, W .
COMPUTER-AIDED DESIGN, 1994, 26 (01) :17-28
[8]  
Piegl L., 1997, NURBS BOOK, V2nd ed., DOI DOI 10.1007/978-3-642-59223-2
[9]   KNOT-REMOVAL ALGORITHMS FOR NURBS CURVES AND SURFACES [J].
TILLER, W .
COMPUTER-AIDED DESIGN, 1992, 24 (08) :445-453
[10]   DEGREE REDUCTION OF BEZIER CURVES [J].
WATKINS, MA ;
WORSEY, AJ .
COMPUTER-AIDED DESIGN, 1988, 20 (07) :398-405