SPECTRAL STRUCTURE OF 2-DIMENSIONAL FIBONACCI QUASILATTICES

被引:24
作者
FU, XJ
LIU, YY
CHENG, BL
ZHENG, DF
机构
[1] S CHINA UNIV TECHNOL,DEPT PHYS,CANTON 510641,PEOPLES R CHINA
[2] INNER MONGOLIA NORMAL UNIV,DEPT PHYS,HOHHOT 010022,PEOPLES R CHINA
[3] CHINESE CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING 100080,PEOPLES R CHINA
来源
PHYSICAL REVIEW B | 1991年 / 43卷 / 13期
关键词
D O I
10.1103/PhysRevB.43.10808
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By means of a decomposition-decimation method based on the renormalization-group technique, we have studied the spectral properties of two-dimensional Fibonacci quasilattices. It is found that the spectrum of two-dimensional Fibonacci quasilattices has a variety of multifurcating structures. The analytic results show that, up to the third hierarchy of the spectrum, there are three kinds of branching types: Type I corresponds to a 1:5 (one-split-into-five) subband structures; type II to a 1:3 (one-to-three) subband structure; and type III to a 1:9 (one-to-nine) subband structures. We have also predicted the branching rules of even higher hierarchies of the spectrum. These analytic results are confirmed by numerical simulations.
引用
收藏
页码:10808 / 10814
页数:7
相关论文
共 23 条
[1]   DYNAMIC PROPERTIES OF 2-DIMENSIONAL QUASI-CRYSTALS [J].
ASHRAFF, JA ;
LUCK, JM ;
STINCHCOMBE, RB .
PHYSICAL REVIEW B, 1990, 41 (07) :4314-4329
[2]   MULTIFRACTAL WAVE-FUNCTIONS ON A FIBONACCI LATTICE [J].
FUJIWARA, T ;
KOHMOTO, M ;
TOKIHIRO, T .
PHYSICAL REVIEW B, 1989, 40 (10) :7413-7416
[3]   THE ELECTRONIC DENSITY OF STATES OF AN INFINITE ONE-DIMENSIONAL FIBONACCI CHAIN [J].
KARMAKAR, SN ;
CHAKRABARTI, A ;
MOITRA, RK .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (08) :1423-1428
[4]   QUASI-PERIODIC LATTICE - ELECTRONIC-PROPERTIES, PHONON PROPERTIES, AND DIFFUSION [J].
KOHMOTO, M ;
BANAVAR, JR .
PHYSICAL REVIEW B, 1986, 34 (02) :563-566
[5]   LOCALIZATION PROBLEM AND MAPPING OF ONE-DIMENSIONAL WAVE-EQUATIONS IN RANDOM AND QUASI-PERIODIC MEDIA [J].
KOHMOTO, M .
PHYSICAL REVIEW B, 1986, 34 (08) :5043-5047
[6]   LOCALIZATION PROBLEM IN ONE DIMENSION - MAPPING AND ESCAPE [J].
KOHMOTO, M ;
KADANOFF, LP ;
TANG, C .
PHYSICAL REVIEW LETTERS, 1983, 50 (23) :1870-1872
[7]   ELECTRONIC AND VIBRATIONAL-MODES ON A PENROSE LATTICE - LOCALIZED STATES AND BAND-STRUCTURE [J].
KOHMOTO, M ;
SUTHERLAND, B .
PHYSICAL REVIEW B, 1986, 34 (06) :3849-3853
[8]   ELECTRONIC STATES ON A PENROSE LATTICE [J].
KOHMOTO, M ;
SUTHERLAND, B .
PHYSICAL REVIEW LETTERS, 1986, 56 (25) :2740-2743
[9]   BRANCHING-RULES OF THE ENERGY-SPECTRUM OF ONE-DIMENSIONAL QUASI-CRYSTALS [J].
LIU, YY ;
SRITRAKOOL, W .
PHYSICAL REVIEW B, 1991, 43 (01) :1110-1116
[10]   ELECTRONIC-PROPERTIES OF PERFECT AND NONPERFECT ONE-DIMENSIONAL QUASI-CRYSTALS [J].
LIU, YY ;
RIKLUND, R .
PHYSICAL REVIEW B, 1987, 35 (12) :6034-6042