Extracellular recordings were obtained from area CA1 of guinea pig hippocampal slices. PbTx-3, a brevetoxin fraction isolated from the red tide dinoflagellate Ptychodiscus brevis, was applied by bath perfusion. The toxin produced a concentration-dependent depression of the orthodromically evoked population spike with an EC50 of 37.5 nM. Brevetoxin concentrations below 10 nM were without effect, and concentrations above 100 nM led to total inhibition of evoked responses. PbTx-3 did not produce spontaneous synchronous discharges but did induce afterdischarges following evoked responses in about 50% of the slices tested, particularly at concentrations between 10 nM and 100 nM. Orthodromically evoked responses were more sensitive to PbTx-3 than were those elicited by antidromic stimulation. High-Ca2+ solution, 4-aminopyridine, and tetraethylammonium failed to antagonize either orthodromic or antidromic effects of the toxin. Although the precise mechanism by which PbTx-3 depresses evoked responses is not certain, depolarization of the presynaptic nerve terminals leading to failure of transmitter release could explain the toxin's actions. This is the first report of the effects of brevetoxin applied directly to central nervous system tissue.