APPROXIMATION OF EXPONENTIAL ORDER OF THE ATTRACTOR OF A TURBULENT-FLOW

被引:5
作者
DEBUSSCHE, A
DUBOIS, T
机构
[1] Laboratoire d'Analyse Numérique, Université Paris-Sud, 91405 Orsay
来源
PHYSICA D | 1994年 / 72卷 / 04期
关键词
D O I
10.1016/0167-2789(94)90239-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider the two-dimensional Navier-Stokes equations with periodic boundary conditions, describing the evolution of homogeneous turbulent flows. We use the method of Debussche and Temam [A. Debussche and R. Temam, convergent families of approximate inertial manifolds, J. Math. Pures Appl., to appear] to construct approximate inertial manifolds (AIMs) whose order decreases exponentially fast with respect to the dimension of the manifold. We recall that an AIM is a smooth manifold of solutions M such that the attractor A is contained in a neighborhood of M of thinness eta, eta is called the order of the manifold. The dependence of all the constants with respect to physical parameters, especially the Grashof number, is made explicit
引用
收藏
页码:372 / 389
页数:18
相关论文
共 18 条
[1]  
[Anonymous], 1983, CBNS NSF REGIONAL C
[2]   ON THE DIMENSION OF THE ATTRACTORS IN TWO-DIMENSIONAL TURBULENCE [J].
CONSTANTIN, P ;
FOIAS, C ;
TEMAM, R .
PHYSICA D, 1988, 30 (03) :284-296
[3]  
DEBUSSCHE A, IN PRESS J MATH PURE
[4]  
DEBUSSCHE A, IN PRESS NONLINEAR G
[5]  
DEBUSSCHE A, 1992, IN PRESS P SOODERSTO
[6]  
FOIAS C, 1987, CR ACAD SCI I-MATH, V305, P497
[7]  
FOIAS C, 1979, J MATH PURE APPL, V58, P339
[8]   INERTIAL MANIFOLDS FOR NONLINEAR EVOLUTIONARY EQUATIONS [J].
FOIAS, C ;
SELL, GR ;
TEMAM, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 73 (02) :309-353
[9]   GEVREY CLASS REGULARITY FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
TEMAM, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (02) :359-369
[10]  
Foias C., 1988, Mathematical Modelling and Numerical Analysis, V22, P93