Some theorems of viability theory which are relevant to nonlinear control problems with state constraints and state-dependent control constraints are motivated and surveyed. They all deal with viable solutions to nonlinear control problems, i.e., solutions satisfying at each instant given state constraints of a general and diverse nature. Some classical results on controlled invariance of smooth nonlinear systems are adopted to the nonsmooth case, including inequality constraints bearing on the state and state-dependent constraints on the controls. The concepts of slow and heavy viable solutions are introduced, providing concrete ways of regulating viable solutions, by closed-loop feedbacks and closed-loop dynamical feedbacks. Viability theorems also allow the extension of Lyapunov's second method to nonsmooth observation functions and the construction of 'best' Lyapunov functions. As an application, 'fuzzy differential inclusion' is presented.