DEFECT-CONTROLLED NUMERICAL-METHODS AND SHADOWING FOR CHAOTIC DIFFERENTIAL-EQUATIONS

被引:23
作者
CORLESS, RM
机构
[1] Department of Applied Mathematics, University of Western Ontario, London
来源
PHYSICA D | 1992年 / 60卷 / 1-4期
关键词
D O I
10.1016/0167-2789(92)90249-M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that chaotic ODE's are, in the classical sense, unstable or ill-conditioned. It is not clear that variable step-size codes based on local error control can solve such problems in a useful way. In particular, it is usually difficult to show that the apparent chaos in the resulting solution is not a numerical artifact. I show here that a defect-controlled method gives useful solutions for chaotic problems. A pragmatically modified definition of what it means for a dynamical system to be chaotic is also presented.
引用
收藏
页码:323 / 334
页数:12
相关论文
共 65 条
[31]  
KREISS HO, 1989, INITIAL BOUNDARY VAL, P19
[32]  
KRUCKEBERG F, 1968, TOPICS INTERVAL ANAL, P98
[33]  
Lohner R., 1987, COMPUTER ARITHMETIC, P255
[34]   COMPUTATIONAL CHAOS - A PRELUDE TO COMPUTATIONAL INSTABILITY [J].
LORENZ, EN .
PHYSICA D, 1989, 35 (03) :299-317
[35]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[36]  
2
[37]  
LORENZ EN, 1978, LECT NOTES MATH, V755, P53
[38]  
LORENZ EN, 1966, J ATMOS SCI, V23, P629
[39]  
MOON FC, 1987, CHAOTIC VIBRATIONS, P121
[40]   USING INTERVAL-METHODS FOR THE NUMERICAL-SOLUTION OF ODES [J].
NICKEL, KLE .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (11) :513-523