PHASE-TRANSITIONS AND GENERALIZED MOTION BY MEAN-CURVATURE

被引:406
作者
EVANS, LC
SONER, HM
SOUGANIDIS, PE
机构
[1] CARNEGIE MELLON UNIV,PITTSBURGH,PA 15213
[2] BROWN UNIV,PROVIDENCE,RI 02912
关键词
D O I
10.1002/cpa.3160450903
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the limiting behavior of solutions to appropriately rescaled versions of the Allen-Cahn equation, a simplified model for dynamic phase transitions. We rigorously establish the existence in the limit of a phase-antiphase interface evolving according to mean curvature motion. This assertion is valid for all positive time, the motion interpreted in the generalized sense of Evans-Spruck and Chen-Giga-Goto after the onset of geometric singularities.
引用
收藏
页码:1097 / 1123
页数:27
相关论文
共 47 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]  
ALTSCHULER S, MEAN CURVATURE FLOW
[3]   MULTIPHASE THERMOMECHANICS WITH INTERFACIAL STRUCTURE .2. EVOLUTION OF AN ISOTHERMAL INTERFACE [J].
ANGENENT, S ;
GURTIN, ME .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (04) :323-391
[4]  
[Anonymous], 1983, PHASE TRANSIT CRIT P
[5]  
BARLES G, IN PRESS ANN IHP ANA
[6]  
BARLES G, 1985, INRIA464 RAPP
[7]  
BARLES G, IN PRESS SIAM J CON
[8]  
Brakke K. A., 1978, MATH NOTES+, V20
[9]   MOTION BY MEAN-CURVATURE AS THE SINGULAR LIMIT OF GINZBURG-LANDAU DYNAMICS [J].
BRONSARD, L ;
KOHN, RV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (02) :211-237
[10]   THE ROLE OF MICROSCOPIC ANISOTROPY IN THE MACROSCOPIC BEHAVIOR OF A PHASE-BOUNDARY [J].
CAGINALP, G .
ANNALS OF PHYSICS, 1986, 172 (01) :136-155