PHASE-TRANSITIONS AND GENERALIZED MOTION BY MEAN-CURVATURE

被引:406
作者
EVANS, LC
SONER, HM
SOUGANIDIS, PE
机构
[1] CARNEGIE MELLON UNIV,PITTSBURGH,PA 15213
[2] BROWN UNIV,PROVIDENCE,RI 02912
关键词
D O I
10.1002/cpa.3160450903
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the limiting behavior of solutions to appropriately rescaled versions of the Allen-Cahn equation, a simplified model for dynamic phase transitions. We rigorously establish the existence in the limit of a phase-antiphase interface evolving according to mean curvature motion. This assertion is valid for all positive time, the motion interpreted in the generalized sense of Evans-Spruck and Chen-Giga-Goto after the onset of geometric singularities.
引用
收藏
页码:1097 / 1123
页数:27
相关论文
共 47 条
[41]   CURVATURE AND THE EVOLUTION OF FRONTS [J].
SETHIAN, JA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (04) :487-499
[42]  
SETHIAN JA, 1990, J DIFFER GEOM, V31, P131
[43]  
SONER HM, IN PRESS COMM PDE
[44]  
SONER HM, IN PRESS J DIFF EQS
[45]  
STERNBERG P, 1988, ARCH RATION MECH AN, V101, P209
[46]  
STERNBERG P, IN PRESS ROCKY MT J
[47]  
[No title captured]