Current and emerging quantitative magnetic resonance imaging methods for assessing and predicting the response of breast cancer to neoadjuvant therapy

被引:33
作者
Abramson, Richard G. [1 ,2 ,9 ]
Arlinghaus, Lori R. [1 ,2 ]
Weis, Jared A. [1 ,2 ]
Li, Xia [1 ,2 ]
Dula, Adrienne N. [1 ,2 ]
Chekmenev, Eduard Y. [1 ,4 ,9 ]
Smith, Seth A. [1 ,3 ,5 ]
Miga, Michael I. [1 ,3 ,6 ]
Abramson, Vandana G. [7 ,9 ]
Yankeelov, Thomas E. [1 ,3 ,5 ,8 ,9 ]
机构
[1] Vanderbilt Univ, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Dept Biochem, Nashville, TN 37235 USA
[5] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA
[6] Vanderbilt Univ, Dept Neurosurg, Nashville, TN 37235 USA
[7] Vanderbilt Univ, Dept Med Oncol, Nashville, TN 37235 USA
[8] Vanderbilt Univ, Dept Canc Biol, Nashville, TN 37235 USA
[9] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Nashville, TN 37235 USA
来源
BREAST CANCER-TARGETS AND THERAPY | 2012年 / 4卷
基金
美国国家卫生研究院;
关键词
treatment response; presurgical treatment; neoadjuvant chemotherapy;
D O I
10.2147/BCTT.S35882
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Reliable early assessment of breast cancer response to neoadjuvant therapy (NAT) would provide considerable benefit to patient care and ongoing research efforts, and demand for accurate and noninvasive early-response biomarkers is likely to increase. Response assessment techniques derived from quantitative magnetic resonance imaging (MRI) hold great potential for integration into treatment algorithms and clinical trials. Quantitative MRI techniques already available for assessing breast cancer response to neoadjuvant therapy include lesion size measurement, dynamic contrast-enhanced MRI, diffusion-weighted MRI, and proton magnetic resonance spectroscopy. Emerging yet promising techniques include magnetization transfer MRI, chemical exchange saturation transfer MRI, magnetic resonance elastography, and hyperpolarized MR. Translating and incorporating these techniques into the clinical setting will require close attention to statistical validation methods, standardization and reproducibility of technique, and scanning protocol design.
引用
收藏
页码:139 / 154
页数:16
相关论文
共 145 条
[1]  
Abraham DC, 1996, CANCER, V78, P91, DOI 10.1002/(SICI)1097-0142(19960701)78:1<91::AID-CNCR14>3.0.CO
[2]  
2-2
[3]  
Abramson RG, 2012, MAGN RESON IMAGING
[4]   Early Changes in Functional Dynamic Magnetic Resonance Imaging Predict for Pathologic Response to Neoadjuvant Chemotherapy in Primary Breast Cancer [J].
Ah-See, Mei-Lin W. ;
Makris, Andreas ;
Taylor, N. Jane ;
Harrison, Mark ;
Richman, Paul I. ;
Burcombe, Russell J. ;
Stirling, J. James ;
d'Arcy, James A. ;
Collins, David J. ;
Pittam, Michael R. ;
Ravichandran, Duraisamy ;
Padhani, Anwar R. .
CLINICAL CANCER RESEARCH, 2008, 14 (20) :6580-6589
[5]   Effects of cell volume fraction changes on apparent diffusion in human cells [J].
Anderson, AW ;
Xie, J ;
Pizzonia, J ;
Bronen, RA ;
Spencer, DD ;
Gore, JC .
MAGNETIC RESONANCE IMAGING, 2000, 18 (06) :689-695
[6]   Can Signal Enhancement Ratio (SER) Reduce the Number of Recommended Biopsies without Affecting Cancer Yield in Occult MRI-detected Lesions? [J].
Arasu, Vignesh A. ;
Chen, Ryan C-Y ;
Newitt, David N. ;
Chang, C. Belinda ;
Tso, Hilda ;
Hylton, Nola M. ;
Joe, Bonnie N. .
ACADEMIC RADIOLOGY, 2011, 18 (06) :716-721
[7]  
Arlinghaus LR, 2012, QUANTITATIVE MRI CAN
[8]   Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth [J].
Atuegwu, N. C. ;
Colvin, D. C. ;
Loveless, M. E. ;
Xu, L. ;
Gore, J. C. ;
Yankeelov, T. E. .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (01) :225-240
[9]   Integration of Diffusion-Weighted MRI Data and a Simple Mathematical Model to Predict Breast Tumor Cellularity During Neoadjuvant Chemotherapy [J].
Atuegwu, Nkiruka C. ;
Arlinghaus, Lori R. ;
Li, Xia ;
BrianWelch, E. ;
Chakravarthy, Bapsi A. ;
Gore, John C. ;
Yankeelov, Thomas E. .
MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (06) :1689-1696
[10]   Syndecan-1 and syndecan-4 are overexpressed in an estrogen receptor-negative, highly proliferative breast carcinoma subtype [J].
Baba, Fusun ;
Swartz, Kathryn ;
van Buren, Regina ;
Eickhoff, Jens ;
Zhang, Yong ;
Wolberg, William ;
Friedl, Andreas .
BREAST CANCER RESEARCH AND TREATMENT, 2006, 98 (01) :91-98