DENSITY-ESTIMATION UNDER LONG-RANGE DEPENDENCE

被引:35
作者
CSORGO, S [1 ]
MIELNICZUK, J [1 ]
机构
[1] POLISH ACAD SCI,INST COMP SCI,PL-01237 WARSAW,POLAND
关键词
LONG-RANGE DEPENDENCE; GAUSSIAN SUBORDINATION; KERNEL DENSITY ESTIMATORS; WEAK CONVERGENCE IN SUPREMUM NORM; DEGENERATE LIMITING PROCESSES; HERMITE POLYNOMIALS;
D O I
10.1214/aos/1176324632
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Dehling and Taqqu established the weak convergence of the empirical process for a long-range dependent stationary sequence under Gaussian subordination. We show that the corresponding density process, based on kernel estimators of the marginal density, converges weakly with the same normalization to the derivative of their limiting process. The phenomenon, which carries on for higher derivatives and for functional laws of the iterated logarithm, is in contrast with independent or weakly dependent situations, where the density process cannot be tight in the usual function spaces with supremum distances.
引用
收藏
页码:990 / 999
页数:10
相关论文
共 16 条
[1]   SOME GLOBAL MEASURES OF DEVIATIONS OF DENSITY-FUNCTION ESTIMATES [J].
BICKEL, PJ ;
ROSENBLA.M .
ANNALS OF STATISTICS, 1973, 1 (06) :1071-1095
[2]  
Bradley R.C., 1983, STAT PROBABIL LETT, V1, P295
[3]   ESTIMATION OF DENSITIES - MINIMAL RISK [J].
BRETAGNOLLE, J ;
HUBER, C .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 47 (02) :119-137
[4]  
CHENG B, 1991, STAT SINICA, V1, P335
[5]   THE FUNCTIONAL LAW OF THE ITERATED LOGARITHM FOR THE EMPIRICAL PROCESS OF SOME LONG-RANGE DEPENDENT SEQUENCES [J].
DEHLING, H ;
TAQQU, MS .
STATISTICS & PROBABILITY LETTERS, 1988, 7 (01) :81-85
[6]   THE EMPIRICAL PROCESS OF SOME LONG-RANGE DEPENDENT SEQUENCES WITH AN APPLICATION TO U-STATISTICS [J].
DEHLING, H ;
TAQQU, MS .
ANNALS OF STATISTICS, 1989, 17 (04) :1767-1783
[7]   CONTINUOUS-FUNCTIONS WHOSE LEVEL SETS ARE ORTHOGONAL TO ALL POLYNOMIALS OF A GIVEN DEGREE [J].
DEHLING, H ;
TAQQU, MS .
ACTA MATHEMATICA HUNGARICA, 1992, 60 (3-4) :217-224
[8]   NON-CENTRAL LIMIT-THEOREMS FOR NONLINEAR FUNCTIONALS OF GAUSSIAN FIELDS [J].
DOBRUSHIN, RL ;
MAJOR, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (01) :27-52
[9]   CONVERGENCE-RATES IN DENSITY-ESTIMATION FOR DATA FROM INFINITE-ORDER MOVING AVERAGE PROCESSES [J].
HALL, P ;
HART, JD .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 87 (02) :253-274
[10]  
HALL P, 1994, SR694 AUSTR NAT U CT