HOW DO INSECT HERBIVORES COPE WITH THE EXTREME OXIDATIVE STRESS OF PHOTOTOXIC HOST PLANTS

被引:34
作者
AUCOIN, R [1 ]
GUILLET, G [1 ]
MURRAY, C [1 ]
PHILOGENE, BJR [1 ]
ARNASON, JT [1 ]
机构
[1] UNIV OTTAWA,DEPT BIOL,OTTAWA,ON K1N 695,CANADA
关键词
ANTIOXIDANTS; PHOTOTOXINS; GLUTATHIONE; LIPID PEROXIDATION; DETOXIFICATION;
D O I
10.1002/arch.940290210
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants of the Asteraceae and Hypericaceae possess secondary compounds that induce photooxidation in insect herbivores that consume them. One of the well-established modes of action of these substances is peroxidation of membrane lipids. Some herbivores counteract these defences by avoidance of light and tissues rich in phototoxins or the ability to detoxify these secondary substances. The cytochrome P-450 polysubstrate monooxygenase systems involved, the metabolic products, and a new putative toxin pump have been described. Dietary antioxidants (beta-carotene, vitamin E, ascorbate) are additional defences against phototoxicity. They reduce mortality in herbivores exposed to phototoxins and some specialist herbivores have high constitutive levels. Adapted specialist insects also have higher constitutive levels of superoxide dismutase (SOD) and respond to phototoxins in their diet by the induction of catalase (CAT), glutathione reductase (CR), and increased levels of reduced glutathione (GSH). Artificial inhibition of the enzymes SOD and CAT had little effect on phototoxicity but inhibition of GSH synthesis in herbivores enhanced photooxidative effects of administered phototoxins on lipid peroxidation. While insects have many mechanisms to overcome plant photooxidants, the Asteraceae appear to have adopted a strategy of counterattack. We suggest and provide preliminary evidence that a second group of secondary substances, the sesquiterpene lactones, occurring in the Asteraceae can attack key antioxidant defences to synergise phototoxins. (C) 1995 Wiley-Liss, Inc.
引用
收藏
页码:211 / 226
页数:16
相关论文
共 44 条
  • [1] Ahmad S., 1986, P73
  • [2] BIOCHEMICAL DEFENSE OF PROOXIDANT PLANT ALLELOCHEMICALS BY HERBIVOROUS INSECTS
    AHMAD, S
    [J]. BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 1992, 20 (04) : 269 - 296
  • [3] [Anonymous], 1973, NATURALLY OCCURRING
  • [4] MODE OF ACTION OF THE SESQUITERPENE LACTONE, TENULIN, FROM HELENIUM-AMARUM AGAINST HERBIVOROUS INSECTS
    ARNASON, JT
    ISMAN, MB
    PHILOGENE, BJR
    WADDELL, TG
    [J]. JOURNAL OF NATURAL PRODUCTS, 1987, 50 (04): : 690 - 695
  • [5] ARNASON JT, 1992, HERBIVORES THEIR INT, V2, P317
  • [6] THE PROTECTIVE EFFECT OF ANTIOXIDANTS TO A PHOTOTOXIN-SENSITIVE INSECT HERBIVORE, MANDUCA-SEXTA
    AUCOIN, RR
    FIELDS, P
    LEWIS, MA
    PHILOGENE, BJR
    ARNASON, JT
    [J]. JOURNAL OF CHEMICAL ECOLOGY, 1990, 16 (10) : 2913 - 2924
  • [7] AUCOIN RR, 1991, ARCH INSECT BIOCH PH, V16, P1
  • [8] AUCOIN RR, 1991, THESIS U OTTAWA
  • [9] GENETICS OF PHYSIOLOGICAL AND BEHAVIORAL RESISTANCE TO HOST FURANOCOUMARINS IN THE PARSNIP WEBWORM
    BERENBAUM, MR
    ZANGERL, AR
    [J]. EVOLUTION, 1992, 46 (05) : 1373 - 1384
  • [10] BULL DL, 1984, J CHEM ECOL, V6, P893