ON CLASSICAL AND QUANTUM INTEGRABLE FIELD-THEORIES ASSOCIATED TO KAC-MOODY CURRENT-ALGEBRAS

被引:45
作者
FREIDEL, L
MAILLET, JM
机构
[1] LPTHE, Université Pierre et Marie Curie, F-75252 Paris
关键词
HAMILTONIAN STRUCTURES; R-MATRIX;
D O I
10.1016/0370-2693(91)90479-A
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present classical and quantum algebraic structures for two-dimensional integrable field theories associated to Kac-Moody current algebras. We obtain in particular classical and quantum discretized versions of such current algebras. The corresponding monodromy matrix is shown to satisfy extended quantum group relations, leading to integrable properties of these theories. We apply our constructions to the lattice non-abelian Toda field theory.
引用
收藏
页码:403 / 410
页数:8
相关论文
共 20 条
[1]  
ALEKSEEV A, CERNTH598191 PREPR
[2]  
[Anonymous], 1988, Quantization of Lie groups and Lie algebras
[3]   QUANTUM TODA THEORY [J].
BABELON, O ;
BONORA, L .
PHYSICS LETTERS B, 1991, 253 (3-4) :365-372
[4]  
Baxter R. J., 1982, Exactly solved models in statistical mechanics
[5]  
DRINFELD VG, 1983, DOKL AKAD NAUK SSSR+, V268, P285
[6]   QUADRATIC ALGEBRAS AND INTEGRABLE SYSTEMS [J].
FREIDEL, L ;
MAILLET, JM .
PHYSICS LETTERS B, 1991, 262 (2-3) :278-284
[7]   QUANTUM R-MATRIX FOR THE GENERALIZED TODA SYSTEM [J].
JIMBO, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 102 (04) :537-547
[8]   KAC-MOODY ALGEBRA AND EXTENDED YANG-BAXTER RELATIONS IN THE O(N) NON-LINEAR SIGMA-MODEL [J].
MAILLET, JM .
PHYSICS LETTERS B, 1985, 162 (1-3) :137-142
[9]   NEW INTEGRABLE CANONICAL STRUCTURES IN TWO-DIMENSIONAL MODELS [J].
MAILLET, JM .
NUCLEAR PHYSICS B, 1986, 269 (01) :54-76
[10]   HAMILTONIAN STRUCTURES FOR INTEGRABLE CLASSICAL-THEORIES FROM GRADED KAC-MOODY ALGEBRAS [J].
MAILLET, JM .
PHYSICS LETTERS B, 1986, 167 (04) :401-405