A GENERALIZATION OF ORE THEOREM INVOLVING NEIGHBORHOOD UNIONS

被引:20
作者
BROERSMA, HJ
VANDENHEUVEL, J
VELDMAN, HJ
机构
[1] Faculty of Applied Mathematics, University of Twente, 7500 AE Enschede
关键词
D O I
10.1016/0012-365X(93)90285-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of order n. Settling conjectures of Chen and Jackson, we prove the following generalization of Ore's Theorem: If G is 2-connected and \N(u) or N(v)\ greater-than-or-equal-to 1/2n for every pair of nonadjacent vertices u, v, then either G is hamiltonian, or G is the Petersen graph, or G belongs to one of three families of exceptional graphs of connectivity 2.
引用
收藏
页码:37 / 49
页数:13
相关论文
共 11 条
[1]  
Badian E., 1989, Z PAPYROLOGIE EPIGRA, V79, P59
[2]   HAMILTONIAN PROPERTIES OF GRAPHS WITH LARGE NEIGHBORHOOD UNIONS [J].
BAUER, D ;
FAN, GH ;
VELDMAN, HJ .
DISCRETE MATHEMATICS, 1991, 96 (01) :33-49
[3]  
BONDY JA, 1976, GRAPH THEORY APPLICA
[4]   LONG DOMINATING CYCLES AND PATHS IN GRAPHS WITH LARGE NEIGHBORHOOD UNIONS [J].
BROERSMA, HJ ;
VELDMAN, HJ .
JOURNAL OF GRAPH THEORY, 1991, 15 (01) :29-38
[5]  
Dirac G. A., 1952, P LOND MATH SOC, V2, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
[6]   NEIGHBORHOOD UNIONS AND A GENERALIZATION OF DIRACS THEOREM [J].
FAUDREE, RJ ;
GOULD, RJ ;
JACOBSON, MS ;
LESNIAK, LM .
DISCRETE MATHEMATICS, 1992, 105 (1-3) :61-71
[7]  
FAUDREE RJ, 1991, ARS COMBINATORIA, V31, P139
[8]  
FAUDREE RJ, 1989, J COMBINAT THEORY B, V46, P1
[9]   NEIGHBORHOOD UNIONS AND HAMILTON CYCLES [J].
JACKSON, B .
JOURNAL OF GRAPH THEORY, 1991, 15 (04) :443-451
[10]  
Ore O., 1960, AM MATH MON, V67, P55, DOI [10.2307/2308928, DOI 10.2307/2308928]