STATISTICAL PROPERTIES OF EIGENFUNCTIONS OF RANDOM QUASI 1D ONE-PARTICLE HAMILTONIANS

被引:143
作者
FYODOROV, YV
MIRLIN, AD
机构
[1] WEIZMANN INST SCI, DEPT NUCL PHYS, IL-76100 REHOVOT, ISRAEL
[2] UNIV KARLSRUHE, INST THEORIE KONDENSIERTEN MAT, D-76128 KARLSRUHE, GERMANY
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 1994年 / 8卷 / 27期
关键词
D O I
10.1142/S0217979294001640
中图分类号
O59 [应用物理学];
学科分类号
摘要
The article reviews recent analytical results concerning statistical properties of eigenfunctions of random Hamiltonians with broken time reversal symmetry describing a motion of a quantum particle in a thick wire of finite length L. It is demonstrated that the problem is equivalent to the study of properties of large Random Banded Matrices in the limit of large width of the band. Matrices of this class are relevant for a number of problems in Solid State physics and in the domain of Quantum Chaos. We find the analytical expressions for the distribution of the following quantities: i) the eigenfunction amplitude \psi(r)\(2) at given point of the sample; ii) spatial extent of the eigenfunction measured by the ''inverse participation ratio'' P = integral(V) dr\psi(r)\(4); iii) the quantity R = \psi(r)psi(r')\(2), points r and r' belonging to the opposite ends of the sample. For a long sample the quantity -(ln R)IL characterizes the decay rate of a localized eigenfunction (Lyapunov exponent). Relation with available numerical results is discussed.
引用
收藏
页码:3795 / 3842
页数:48
相关论文
共 80 条
[1]   CONDUCTIVITY OF QUASI-ONE-DIMENSIONAL METAL SYSTEMS [J].
ABRIKOSOV, AA ;
RYZHKIN, IA .
ADVANCES IN PHYSICS, 1978, 27 (02) :147-230
[2]   THE PARADOX WITH THE STATIC CONDUCTIVITY OF A ONE-DIMENSIONAL METAL [J].
ABRIKOSOV, AA .
SOLID STATE COMMUNICATIONS, 1981, 37 (12) :997-1000
[3]   DIAGRAMMATIC APPROACH TO ANDERSON LOCALIZATION IN THE QUANTUM KICKED ROTATOR [J].
ALTLAND, A .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :69-72
[4]  
Altshuler B. L, 1991, MESOSCOPIC PHENOMENA
[5]  
ALTSHULER BL, 1989, ZH EKSP TEOR FIZ, V68, P198
[6]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[7]   NONLOGARITHMIC REPULSION OF TRANSMISSION EIGENVALUES IN A DISORDERED WIRE [J].
BEENAKKER, CWJ ;
REJAEI, B .
PHYSICAL REVIEW LETTERS, 1993, 71 (22) :3689-3692
[8]  
BEREZINSKII VL, 1973, ZH EKSP TEOR FIZ, V37, P369
[9]  
Bogachev L. V., 1991, MAT ZAMETKI, V50, P31
[10]   BAND-RANDOM-MATRIX MODEL FOR QUANTUM LOCALIZATION IN CONSERVATIVE-SYSTEMS [J].
CASATI, G ;
CHIRIKOV, BV ;
GUARNERI, I ;
IZRAILEV, FM .
PHYSICAL REVIEW E, 1993, 48 (03) :R1613-R1616