NON-COHEN-MACAULAY SYMBOLIC BLOW-UPS FOR SPACE MONOMIAL CURVES AND COUNTEREXAMPLES TO COWSIK QUESTION

被引:49
作者
GOTO, S
NISHIDA, K
WATANABE, KI
机构
[1] CHIBA UNIV,GRAD SCH SCI & TECHNOL,CHIBA,JAPAN
[2] TOKAI UNIV,DEPT MATH SCI,HIRATSUKA,KANAGAWA 25912,JAPAN
关键词
D O I
10.2307/2159873
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A = k[[X, Y, Z]] and k[[T]] be formal power series rings over a field k , and let n > 4 be an integer such that n not-equal 0 mod 3. Let phi:A - k[[T]] denote the homomorphism of k-algebras defined by phi(X) = T7n-3, phi(Y) = T(5n-2)n, and phi(Z) = T8n-3. We put p = Kerphi. Then R(s)(p) = +igreater-than-or-equal-to0p(i) is a Noetherian ring if and only if chk > 0. Hence on Cowsik's question there are counterexamples among the prime ideals defining space monomial curves, too.
引用
收藏
页码:383 / 392
页数:10
相关论文
共 11 条