ON THE RELIABILITY OF GRAVITATIONAL N-BODY INTEGRATIONS

被引:56
作者
QUINLAN, GD [1 ]
TREMAINE, S [1 ]
机构
[1] CALTECH, PASADENA, CA 91125 USA
关键词
METHODS-NUMERICAL; CELESTIAL MECHANICS; STELLAR DYNAMICS; GALAXIES-KINEMATICS AND DYNAMICS;
D O I
10.1093/mnras/259.3.505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In a self-gravitating system of point particles such as a spherical star cluster, small disturbances to an orbit grow exponentially on a time-scale comparable with the crossing time. The results of N-body integrations are therefore extremely sensitive to numerical errors: in practice it is almost impossible to follow orbits of individual particles accurately for more than a few crossing times. We demonstrate that numerical orbits in the gravitational N-body problem are often shadowed by true orbits for many crossing times. This result enhances our confidence in the use of N-body integrations to study the evolution of stellar systems.
引用
收藏
页码:505 / 518
页数:14
相关论文
共 26 条
[1]  
Aarseth S.J., 1985, MULTIPLE TIME SCALES, P377
[2]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[3]  
[Anonymous], 1991, J NONLINEAR SCI, DOI [10.1007/BF01209065, DOI 10.1007/BF01209065]
[4]  
[Anonymous], 2008, GALACTIC DYNAMICS, DOI DOI 10.1515/9781400828722
[5]  
DEJONGHE H, 1986, USE SUPERCOMPUTERS S, P212
[6]   Optimal shadowing and noise reduction [J].
Farmer, J.D. ;
Sidorowich, J.J. .
Physica D: Nonlinear Phenomena, 1991, 47 (03) :373-392
[7]  
GOODMAN J, 1992, UNPUB APJ
[8]   SHADOWING OF PHYSICAL TRAJECTORIES IN CHAOTIC DYNAMICS - CONTAINMENT AND REFINEMENT [J].
GREBOGI, C ;
HAMMEL, SM ;
YORKE, JA ;
SAUER, T .
PHYSICAL REVIEW LETTERS, 1990, 65 (13) :1527-1530
[9]  
GURZADYAN VG, 1986, ASTRON ASTROPHYS, V160, P203
[10]  
Hammel S. M., 1987, Journal of Complexity, V3, P136, DOI 10.1016/0885-064X(87)90024-0