POLYHEDRAL ERMAKOV SYSTEMS

被引:7
作者
ATHORNE, C
机构
[1] Department of Mathematics, University of Glasgow, Glasgow
关键词
D O I
10.1016/0375-9601(90)90913-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We identify within the class of rational Ermakov systems examples of a subclass having the property that their general integrals are algebraic functions of solutions of the time-dependent harmonic oscillator.
引用
收藏
页码:407 / 411
页数:5
相关论文
共 12 条
[1]   ON LINEARIZATION OF THE ERMAKOV SYSTEM [J].
ATHORNE, C ;
ROGERS, C ;
RAMGULAM, U ;
OSBALDESTIN, A .
PHYSICS LETTERS A, 1990, 143 (4-5) :207-212
[2]  
ATHORNE C, 1990, RATIONAL ERMAKOV SYS
[3]  
ERMAKOV VP, 1880, U IZV KIEV, V20, P1, DOI [DOI 10.2298/AADM0802123E, 10.2298/AADM0802123E]
[4]  
Forsyth A. R., 1902, ORDINARY LINEAR EQUA, V4
[5]  
Klein F., 1884, VORLESUNGEN IKOSAEDE
[7]   GENERALIZED RAY - REID SYSTEMS [J].
LUTZKY, M .
PHYSICS LETTERS A, 1980, 78 (04) :301-303
[8]   THE NONLINEAR DIFFERENTIAL EQUATION Y''+P(X)Y+CY-3=0 [J].
PINNEY, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (05) :681-681
[9]   NON-LINEAR SUPERPOSITION LAW FOR GENERALIZED ERMAKOV SYSTEMS [J].
RAY, JR .
PHYSICS LETTERS A, 1980, 78 (01) :4-6
[10]   NEW NON-LINEAR DYNAMICAL-SYSTEMS POSSESSING INVARIANTS [J].
RAY, JR ;
REID, JL ;
LUTZKY, M .
PHYSICS LETTERS A, 1981, 84 (02) :42-44