ON LINEARIZATION OF THE ERMAKOV SYSTEM

被引:53
作者
ATHORNE, C
ROGERS, C
RAMGULAM, U
OSBALDESTIN, A
机构
[1] LOUGHBOROUGH UNIV TECHNOL,DEPT MATH SCI,LOUGHBOROUGH LE11 3TU,LEICS,ENGLAND
[2] UNIV WATERLOO,DEPT APPL MATH,WATERLOO N2L 3G1,ONTARIO,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0375-9601(90)90740-F
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the nonlinear Ermakov system may be reduced to consideration of a pair of linear equations. Geometric aspects of the procedure along with analytic results pertaining to its inversion are noted. Graphical results are presented for a particular Ermakov system that arises in two-layer long wave theory. © 1990.
引用
收藏
页码:207 / 212
页数:6
相关论文
共 19 条
[1]  
ERMAKOV VP, 1880, U IZV KIEV, V20, P1, DOI [DOI 10.2298/AADM0802123E, 10.2298/AADM0802123E]
[2]   2ND CONSTANT OF MOTION FOR GENERALIZED ERMAKOV SYSTEMS [J].
GOEDERT, J .
PHYSICS LETTERS A, 1989, 136 (7-8) :391-394
[3]   DYNAMICAL INVARIANTS AND TIME-DEPENDENT HARMONIC SYSTEMS [J].
KORSCH, HJ .
PHYSICS LETTERS A, 1979, 74 (05) :294-296
[5]   AN APPLICATION OF RAY-REID INVARIANTS [J].
LUTZKY, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (06) :1370-1371
[6]   GENERALIZED RAY - REID SYSTEMS [J].
LUTZKY, M .
PHYSICS LETTERS A, 1980, 78 (04) :301-303
[7]   NON-LINEAR SUPERPOSITION LAW FOR GENERALIZED ERMAKOV SYSTEMS [J].
RAY, JR .
PHYSICS LETTERS A, 1980, 78 (01) :4-6
[8]   NEW NON-LINEAR DYNAMICAL-SYSTEMS POSSESSING INVARIANTS [J].
RAY, JR ;
REID, JL ;
LUTZKY, M .
PHYSICS LETTERS A, 1981, 84 (02) :42-44
[9]   ERMAKOV SYSTEMS, VELOCITY DEPENDENT POTENTIALS, AND NON-LINEAR SUPERPOSITION [J].
RAY, JR ;
REID, JL .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (01) :91-95
[10]   INVARIANTS FOR NON-LINEAR EQUATIONS OF MOTION [J].
RAY, JR .
PROGRESS OF THEORETICAL PHYSICS, 1981, 65 (03) :877-882