CLUSTERED MOTION IN SYMPLECTIC COUPLED MAP SYSTEMS

被引:89
作者
KONISHI, T [1 ]
KANEKO, K [1 ]
机构
[1] UNIV TOKYO,COLL ARTS & SCI,DEPT PURE & APPL SCI,MEGURO KU,TOKYO 153,JAPAN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 23期
关键词
D O I
10.1088/0305-4470/25/23/023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Clustered motion of particles is found in Hamiltonian dynamics of symplectic coupled map systems. Particles assemble and move with strong correlation. The motion is chaotic but is distinguishable from random chaotic motion. Lyapunov analysis distinguishes global instability from local fluctuations. Clustered motions have finite lifetime. They have fractal geometric structure in the phase space, as the orbits are trapped to ruins of KAM tori and islands.
引用
收藏
页码:6283 / 6296
页数:14
相关论文
共 41 条
[11]   MELNIKOV METHOD AND ARNOLD DIFFUSION FOR PERTURBATIONS OF INTEGRABLE HAMILTONIAN-SYSTEMS [J].
HOLMES, PJ ;
MARSDEN, JE .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) :669-675
[12]  
Ikeda K., 1989, PROG THEOR PHYS SUPP, V99, P295
[13]   TRANSITION, ERGODICITY AND LYAPUNOV SPECTRA OF HAMILTONIAN DYNAMIC-SYSTEMS [J].
KANEKO, K ;
KONISHI, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (09) :2993-2996
[15]   LYAPUNOV ANALYSIS AND INFORMATION-FLOW IN COUPLED MAP LATTICES [J].
KANEKO, K .
PHYSICA D, 1986, 23 (1-3) :436-447
[16]   ARNOLD DIFFUSION, ERGODICITY AND INTERMITTENCY IN A COUPLED STANDARD MAPPING [J].
KANEKO, K ;
BAGLEY, RJ .
PHYSICS LETTERS A, 1985, 110 (09) :435-440
[17]   DIFFUSION IN HAMILTONIAN DYNAMICAL-SYSTEMS WITH MANY DEGREES OF FREEDOM [J].
KANEKO, K ;
KONISHI, T .
PHYSICAL REVIEW A, 1989, 40 (10) :6130-6133
[18]  
KANEKO K, 1989, FORMATION DYNAMICS S, P1
[19]  
Kaneko K., 1986, COLLAPSE TORI GENESI
[20]  
KANEKO K, 1990, PHYSICA D, V41, P38